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A MARKOVIAN ANALYSIS OF ADDITIVE-INCREASEMULTIPLICATIVE-DECREASE (AIMD) ALGORITHMSVINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTAbstra
t. The Additive-In
rease Multipli
ative-De
rease (AIMD) s
hemesdesigned to 
ontrol 
ongestion in 
ommuni
ation networks are investigatedfrom a probabilisti
 point of view. Fun
tional limit theorems for a general
lass of Markov pro
esses that des
ribe these algorithms are obtained. Theasymptoti
 behavior of the 
orresponding invariant measures is des
ribed interms of the limiting Markov pro
esses. For some spe
ial important 
ases,in
luding TCP 
ongestion avoidan
e, an important AR (Autoregressive) prop-erty is proved. As a 
onsequen
e, the expli
it expression of the related invari-ant probabilities is derived. The transient behavior of these algorithms is alsoanalyzed. Contents1. Introdu
tion 12. A generalized Markovian model 5Convergen
e to a Markov pro
ess in �nite time 63. Convergen
e of the invariant measures 114. The representation of the limiting invariant measures 144.1. In�nite maximum window size 154.2. Finite maximum window size 195. The distribution of the hitting times 23Referen
es 271. Introdu
tionThis paper investigates the mathemati
al stru
ture underlying the so-
alled ad-ditive -in
rease multipli
ative-de
rease (AIMD) window based 
ow 
ontrol s
hemesused in data transmission. With the emergen
e of TCP (Transmission ControlProto
ol) as the ubiquitous data transfer proto
ol, the study of these algorithmsis 
ru
ial to understand the 
omplex behavior of modern 
ommuni
ation networks.Keeping in mind that TCP is one of the AIMD algorithms, using the language of
ommuni
ation networks, these algorithms 
an be des
ribed as follows. When apa
ket is sent, it is a
knowledged by the destination when re
eived. To 
ontrol there
eption of pa
kets by the destination, there is a pa
ket loss dete
tion me
hanismused in the AIMD s
heme. This me
hanism is able to dete
t lightweight loss (theloss of a single pa
ket from time to time) as well as heavy loss (for instan
e in theDate: November, 21 2001.1991 Mathemati
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ase of severe 
ongestion in the network). In the 
ase of TCP, lightweight loss isdete
ted through dupli
ated a
knowledgements while heavy loss dete
tion is per-formed through a time-out me
hanism. In the following, we 
onsider the 
ase oflightweight loss only.To simplify the des
ription, we shall assume that the round trip time (RTT)between the sour
e and the destination is 
onstant. The sour
e maintains a variableW referred to as the 
ongestion window size whi
h 
ontrols the transmission ofpa
kets over an RTT interval. When W pa
kets are sent to the destination duringan RTT interval, the sour
e dete
ts if one of them has been lost. If there is aloss, the variable W is 
hanged to bÆW 
 for the next RTT interval, Æ 2℄0; 1[ is themultipli
ative 
onstant whi
h de
rements the window size; in this 
ase the numberof pa
kets sent during the next 
y
le is drasti
ally redu
ed. If all the pa
kets aresu

essfully transmitted, W is just in
remented by some value � > 0 if it does notex
eed some maximal value wmax, the maximal 
ongestion window size. This is of
ourse a simpli�
ation of the real algorithms involved, but the basi
 me
hanism ofredu
ing the 
ongestion (
alled 
ongestion avoidan
e) is 
aptured by this model.See Ja
obson [15℄, Allman et al. [2℄ and Stevens [24℄ for more details.Roughly speaking, the motivation of this algorithm 
an be des
ribed as follows:the loss of pa
kets in the network is mainly due to bu�er over
ow in the nodes of thenetwork. If the 
ongestion window of many sour
es in the network is large, thesesour
es will send many pa
kets at approximately the same time and, very likely,they will 
reate more and more over
ow and thus more and more retransmissions, iftheir respe
tive window sizes are not redu
ed very qui
kly. Multipli
ative de
reaseis a way of rapidly 
ooling down 
ongestion. The additive in
rease 
an be seen asa very progressive test of the 
ongestion of the network.A Markovian representation. The model 
onsidered in the paper des
ribes theex
hange of pa
kets between the sour
e and the destination. Ea
h pa
ket has someprobability of being lost and the probability that pa
kets are lost are independent.(In se
tion 2 we 
onsider a more general loss model.) The in
uen
e of the net-work is des
ribed through this loss pro
ess. With this assumption, the sizes of the
ongestion windows over the su

essive RTT intervals is a Markov 
hain (Wn).The transitions of the Markov 
hain (Wn) are des
ribed by: if W0 = x � 1,(1) W1 = (min (bx+ �
; wmax) with probability exp(��x)max (bÆx
; 1) otherwise,where � > 0, 0 < Æ < 1 and � > 0; bx
 is the integer part of x. The quantityexp(��) is the probability that a pa
ket is not lost in the network and, assumingindependen
e of the losses, exp(��x) is the probability that all the x pa
kets ofthe window are su

essfully transmitted. In this model the intera
tion betweenthe network and the data transfer is represented only through losses of pa
kets.The 
onstant wmax is the maximal 
ongestion window size, only determined by thedestination.When W0 is very large, the drift E(W1 �W0) of the Markov 
hain is equivalentto �(1 � Æ)W0; it implies that the Markov 
hain 
annot travel very far from theorigin, in parti
ular it is ergodi
. (See the details below.) Thus, the long termbehavior of the sour
e is mainly driven by the invariant measure (�n) of (Wn). Fora �xed �, very little is known about this invariant probability, Dumas et al. [9℄gives sto
hasti
 bounds for (�n) whi
h are a

urate when the loss rate is not small.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 3In pra
ti
e, hopefully, the loss rate will be small in the network. This suggeststo look at the limiting behavior of this Markov 
hain when � tends to 0. This isthe main topi
 of this paper. This topi
 is not new and has been studied in greatdetails in the te
hni
al literature (see the se
tion on related works below). The
ontribution of the present paper to the modeling of TCP is in that it takes bene�tas far as possible of the Markovian stru
ture of the 
ongestion avoidan
e regimein order to derive rigorous 
onvergen
e results and to derive 
losed formul� forthe mean throughput of a TCP 
onne
tion with or without upper bound for the
ongestion window size. Moreover, still owing to the Markovian stru
ture of thesystem, it is possible to 
arry out a transient analysis of the 
ongestion avoidan
eregime. In parti
ular, we 
ompute the distribution of the duration of time ne
essaryto rea
h the maximal 
ongestion window size (Se
tion 5).Related work. Floyd [13℄, Floyd et al. [14℄ and Madhavi and Floyd [17℄ ana-lyze the impa
t of AIMD algorithms through simulations and some approximatedmodels.Padhye et al. [21℄ 
onsiders a detailed model of the evolution of TCP. Usinga �nite Markov 
hain taking into a

ount the key features of TCP (window sizeredu
tion, time out, et
.), they express some of the stationary 
hara
teristi
s of theproto
ol. In parti
ular, they obtain a 
losed formula for the throughput of a TCP
onne
tion, whi
h has be
ome 
entral in the �eld of TCP modeling. While theresults obtained in [21℄ rely on an approximation of the di�erent 
hara
teristi
s ofa �nite state Markov 
hain (in parti
ular its steady state distribution), we exploitas far as possible in this paper the Markovian stru
ture of the 
ongestion avoidan
eregime to establish rigorous 
onvergen
e results when the loss probability tendsto 0. Moreover, we take into a

ount a possible upper bound for the maximumwindow size. With regard to the throughput, this does not simply translate intoa trun
ation of the throughput formula obtained when there is no upper bound.In fa
t, the presen
e of the upper bound for the maximum window size a�e
ts thewhole distribution of the steady state probability distribution of the 
ongestionwindow size in an intri
ate way.Via a di�erent approa
h, Ott et al. [20℄ analyzes the evolution of the size of the
ongestion window as the perturbation of a deterministi
 di�erential equation by aPoisson pro
ess when the loss rate is small. In this setting they are able to give adetailed des
ription of the invariant measure when � tends to 0. Altman et al. [4℄extended some of these results to study the 
ase of a �nite maximal 
ongestionwindow. The model 
onsidered by Ott et al. [20℄ 
an be seen as an approximationof the model 
onsidered here (when the window size is in�nite) but at a di�erenttime s
ale (or, more a

urately, pa
ket granularity). It is not 
lear for us how one
ould justify the approximation of the invariant probabilities in this setting (seeSe
tion 4).Along the same lines of investigations, Adjih et al. [1℄ gives an asymptoti
 expres-sion of the invariant measure of the size of the 
ongestion window. They spe
i�
allystudy a large number of TCP 
onne
tions multiplexed in a single bu�er and thenperform asymptoti
 analysis via a mean �eld te
hnique. Altman et al. [3℄ give somemoments of the window size at equilibrium with the assumption that the evolutionof the size of the 
ongestion window is an autoregressive pro
ess. If we indeedprove in our paper that an autoregressive pro
ess indeed plays a role, it does notseem to be related to the pro
ess introdu
ed in [3℄ (see Propositions 12 and 13).
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elli and Hong [6℄ 
onsiders an algebrai
 setting des
ribing pre
isely TCP whenthe input is deterministi
 or periodi
.Finally, while most of studies (in
luding this one) assume �xed round trip times,the 
ase of several TCP 
onne
tions with di�erent round trip times multiplexedon a link has been analyzed by Brown [8℄ via a 
uid-based model. In parti
ular,this analysis shows how the di�erent 
onne
tions o

upy the link and the 
riti
alimpa
t of round trip times and the size of the bu�er on the performan
e of thesystem (e.g., the link utilization and the 
onne
tion throughputs).So far, we have dis
ussed studies on the performan
e of TCP 
onne
tions. ButTCP as well as any other pro
otol used for 
arrying elasti
 traÆ
 poses more generaland very interesting problems with regard to fairness at the network level. Di�erentstudies have addressed this issue in the re
ent past (see for instan
e Kelly [16℄,Roberts and Massouli�e [22℄,Vojnovi�
 et al. [26℄). The problem of fairness alsoappears in the design of transmission proto
ols, whi
h roughly behave as TCP(TCP friendly proto
ols). See for instan
e Vojnovi�
 and Le Boude
 [25℄ for amathemati
al formulation of the problem.The results of the paper. Two Markov 
hains are 
onsidered in this paper (W�n )des
ribing the evolution of 
ongestion window size over the su

essive RTT intervalsand (V �n ) whi
h is the embedded Markov 
hain of (W�n ) observed when a pa
ketis lost. In a quite general framework we prove the 
onvergen
e in distribution oftheir invariant probability measures properly res
aled when the loss rate � goesto 0, i.e. the following 
onvergen
es in distribution lim�!0p�W�1 = W1 andlim�!0p�V �1 = V1 (Theorem 9 and Theorem 10).When the loss probability per pa
ket is 
onstant, an interesting AR (Auto-Regressive) property of the Markov 
hain �(V �n )2�) holds when � is 
lose to 0.This result and the 
onvergen
e results give the key to most of the expli
it 
al
u-lations of distributions: the distribution of V1 (Propositions 13 and 18), of W1(Proposition 16) and the asymptoti
 throughput of the algorithm (Propositions 15and 19).This AR property does not seem to have been earlier identi�ed in the literature.This is a real bene�t of the approa
h of this paper to 
onsider the 
onvergen
e ofthe 
omplete dynami
s of the system rather than analyzing only the 
onvergen
e ofthe invariant probability distribution when � tends to 0. In some of the studies ofTCP (e.g. [3℄), the AR property is assumed, not for ((Vn)2) but for (Vn). It turnsout that this assumption seems to lead a di�erent 
onstant for the throughput, 1:22instead of the 
onstant derived here 1:3098, already observed by Floyd et al. Moreimportant, when the maximum 
ongestion window is in�nite, the equilibrium hasan exponential tail distribution instead of quadrati
 exponential in our 
ase (i.e.� exp(�Cx2)), the number of large 
ongestion windows is thus signi�
antly smallerfor the model 
onsidered here.To our knowledge the transient behavior of AIMD algorithms has not been in-vestigated through analyti
al models. For example, the time to rea
h the maximal
ongestion window is 
learly an important 
hara
teristi
. This measure illustratesthe performan
e of the AIMD s
heme in the sense that it indi
ates how long ittakes, after a perturbation 
ausing lightweight pa
ket loss, to re
over the maxi-mal throughput obtained when the 
ongestion window size is equal to the maximalvalue. For the moment it has not re
eived mu
h attention in the sto
hasti
 models.Some results in this domain are derived with our approa
h.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 5Organization. In Se
tion 2 we prove the main 
onvergen
e results of this paper:
onvergen
e in �nite time of the Markov pro
esses. More important, 
onvergen
eof the 
orresponding invariant distributions is shown in Se
tion 3. In Se
tion 4the expli
it expression of the 
orresponding invariant distributions is derived. Theformulas for the asymptoti
 throughput are obtained and dis
ussed. Se
tion 5 givessome results 
on
erning the transient behavior of TCP, in parti
ular the hitting timeof the maximal 
ongestion window size is investigated.2. A generalized Markovian modelIn this se
tion, with the terminology of 
ommuni
ation networks, we 
onsiderthe sequen
e (W�n ) des
ribing the size of the 
ongestion window over the su

essiveRTT intervals. It is assumed that the round trip time is large and the state ofthe network evolves suÆ
iently rapidly so that the pa
ket loss events in one RTTinterval do not depend on the 
ontiguous RTT intervals.Sin
e we are interested in the asymptoti
 regime when the loss probability tendsto 0 and thus when pa
ket loss rarely o

urs so that it is reasonable to assume thatthere is a single window redu
tion in an RTT, we dire
tly 
onsider the sequen
e(W�n ) des
ribed as a Markov 
hain with the following transitions: if W�0 = n � 1,(2) (W�1 = min(n+ 1; w�max); with probability Qni=1 exp(�h�i );W�1 = max (bÆn
; 1) ; otherwise :The quantity exp(�h�i ) is the probability that during an RTT interval the ithpa
ket is not lost when i� 1 pa
kets have been su

essfully transmitted. We shallassume that for i 2 N,(3) h�i = �h �ip�� ;where h is a non identi
ally 0, 
ontinuous, non de
reasing fun
tion on R+ . Inparti
ular, for x � 0, lim�!0 h�bx=p�
� = h(x):The parameter � 
ontrols the loss rate of the algorithm. The original model (1)
orresponds to the 
ase where h is 
onstant equal to 1.With this model, it is impli
itly assumed that the probability of loss of a pa
ketis non de
reasing with respe
t to its index in the 
urrent window. (As the numberof pa
kets in the network grows, the more likely they will be lost). The 
onstantw�max 2 N [ f+1g is the maximal window size, it is assumed that it satis�es thefollowing s
aling relation with �,(4) lim�!0p� w�max = wmax:Without loss of generality for the asymptoti
 results we are 
onsidering, the additive
onstant � of the transitions (1) 
an be taken equal to 1.The embedded Markov 
hainIt is natural to 
onsider the state of the Markov 
hain (W�n ) just after a loss.The asso
iated pro
ess is denoted by (V �n ), this is 
learly a Markov 
hain whosetransitions are given by, if V �0 = n � 1(5) V �1 = bÆmin (n+G�n ; w�max)
 _ 1
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6 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTwhere x _ 1 = max(x; 1) and the random variable G�n is de�ned byP(G�n � m) = n+m�1Yk=n kYj=1 exp(�h�j );form � 1 and n � 1, re
all thatQkj=1 exp(�h�j ) is the probability that a 
ongestionwindow of k pa
kets is su

essfully transmitted over an RTT interval. The quantityG�n is the number of 
ongestion windows sent su

essfully when the initial windowsize is n. With the above equation it is easy to 
he
k that the random variable G�nis sto
hasti
ally de
reasing with n be
ause h is non de
reasing. Roughly speakingthe number of su

essful 
onse
utive windows is smaller when the starting point ishigher. 6

-���� �������
� ���� �����

(W�n )
V �0

w�max
V �1 V �2 V �3 nFigure 1. Evolution of the 
ongestion window sizeConvergen
e to a Markov pro
ess in �nite time. We now show that theMarkov 
hains des
ribed above are of the order 1=p� when � tends to 0. The nextproposition shows that p� is indeed the right s
aling for the embedded Markov
hain.Proposition 1. For x > 0, as � goes to 0, the random variable p�G�bx=p�

onverges in distribution to a non negative random variable Gx su
h that for y � 0,(6) P �Gx � y� = exp�� Z x+yx H(u) du� ;with H(u) = Z u0 h(v) dv, and for any K > 0,(7) lim�!0 supp��x;y�K ���P �Gx � y�� P�p�G�bx=p�
 � y���� = 0:Moreover, there exists �0 > 0 and �0 > 0 su
h that for � < �0,(8) sup0<�<�0 supx�p� E �e�p�G�bx=p�
� < +1:
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 7When h � 1, the distribution of the random variable Gx is given by, for y � 0,P �Gx � y� = exp ��y2=2� xy� :Proof. For x, y � p� and � 2℄0; 1[, we haveP�p�G�bx=p�
 > y� = P�G�bx=p�
 > by=p� 
� = bx=p�
+by=p�
Yk=bx=p�
 kYj=1 exp(�h�j );thereforelogP�p�G�bx=p�
 > y� = � bx=p�
+by=p�
Xk=bx=p�
 kXj=1 �h(jp� )= � bx=p�
+by=p�
Xk=bx=p�
 p� Z kp�0 h(p�dv=p� e) dv= � Z p�(bx=p�
+by=p�
)x Z p� bu=p�
0 h(p�dv=p� e) dv du:This implies Relation (6). The uniform 
ontinuity of h over 
ompa
t intervalsimplies that h(p�d�=p�e) 
onverges uniformly on [0;K℄ to h as � tends to 0, usingthat for u 2 R, ju�p�bu=p�
 � p�, we getlim�!0 supu�K �����Z p� bu=p�
0 h(p�dv=p� e) dv � Z u0 h(v) dv����� = 0;
onsequently,lim�!0 supp��x;y�K ���logP�p�G�bx=p�
 > y�� logP �Gx � y���� = 0:From the uniform 
ontinuity of the exponential fun
tion on ℄�1; 0℄, the uniform
onvergen
e (7) is then easily obtained.Sin
e the fun
tion h is non de
reasing, the above identity shows that for x � 0,K > 0 and y � 1,logP�p�G�bx=p�
 > y� � � Z y�11 Z K^p� bu=p�
0 h(p�dv=p� e) dv du:If �0 is the integral of h on R+ , then for � < �0 there exists K > 0 and "0 > 0 su
hthat(9) � < Z K0 h(u) du� "0;using again the uniform 
onvergen
e of h(p�d�=p�e) on the interval [0;K℄, onegets that there exists some y0 > 0 and �0 > 0 su
h that for y � y0,sup0<�<�0 supx�0 1y logP�p�G�bx=p�
 > y� � � Z K0 h(v) dv + "0
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onsequently, for y � y0,P�p�G�bx=p�
 > y� � exp y "0 � Z K0 h(v) dv!! ;hen
e, Inequality (9) gives the relationsup0<�<�0 supx�0 Z +12 e�yP�p�G�bx=p�
 > y� dy < +1:Sin
e, by Fubini's Theorem,Z +12 e�yP�p�G�bx=p�
 > y� dy = E  Z p�G�bx=p�
2 e�y dy!the above inequality yieldssup0<�<�0 supx�0 E �e�p�G�bx=p�
� < +1:The proposition is proved. �Noti
e that the s
aling p� does not depend on the parti
ular 
hoi
e of h. Thes
aling of h in h�i = �h (ip�) determines the 
orre
t pro�le for the spa
e depen-den
e of the loss probability. One 
an introdu
e the following Markov 
hain, as weshall see, this is the asymptoti
 embedded Markov 
hain when � tends to 0.De�nition 2. The sequen
e (V n) denotes a Markov 
hain whose transitions aregiven by(10) V 1 = Æmin �V 0 +GV 0 ; wmax� ;where �Gx; x > 0� is a family of random variables independent of V0 su
h that, forx > 0, the distribution of Gx is given by Relation (6).Proposition 3. For any 
ontinuous fun
tion f on R+ with 
ompa
t support, thefollowing 
onvergen
e holds,(11) lim�!0 supx�p� ��E �f �p�Gbx=p�
��� E �f(Gx)��� = 0:If for x > 0, Px denotes the probability su
h that V �0 = bx=p�
 for all � > 0 andV 0 = x, then for n 2 N and a1, . . .an 2 R+ ,lim�!0 supx ��Px �p�V �1 � a1; : : : ;p�V �n � an�� Px �V 1 � a1; : : : ; V n � an��� = 0Proof. If f is a C1 fun
tion on R+ with support in [0;K℄, K > 0, the identitiesdK=p�eXk=2 (f(kp�)� f((k � 1)p�))P(Y � kp�) = E �f(Y )� f(p�)� ;for Y = p�Gbx=p�
 and Y = Gx are easily veri�ed. The uniform 
ontinuity of f 0on R+ and the estimate (7) give the desired 
onvergen
e (11). If f is a 
ontinuousfun
tion with 
ompa
t support in [0;K℄, it 
an be approximated uniformly by C1fun
tions. For " > 0 there exists a C1 fun
tion g on [0;K℄ su
h that sup(jf(x) �g(x)j;x � K) � ", hen
e��E �f �p�Gbx=p�
��� E �f(Gx)��� � 2"+ ��E �g �p�Gbx=p�
��� E �g(Gx)��� :
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 9The �rst part of the proposition is proved.We shall prove the last part of the proposition for n = 2, i.e.lim�!0 supx ��Px �p�V �1 � a1;p�V �2 � a2�� Px �V 1 � a1; V 2 � a2��� = 0:Be
ause of the transitions of the Markov 
hains, it is suÆ
ient to show that for anya1, a2 � wmax, the following 
onvergen
e holdslim�!0 supx ���Px �p�V �1 � a1;p�V �1 +p�G�V �1 � a2�� Px �V 1 � a1; V 1 +GV 1 � a2��� = 0:Sin
ePx �p�V �1 � a1;p�V �1 +p�G�V �1 � a2�= Z a10 P�y +p�G�by=p�
 � a2�Px(p�V �1 2 dy);sin
e the quantity under the integrand is uniformly 
lose to f(y) = P(y+Gy � a2)with respe
t to y 2 [0; a1℄, one has to verify that jEx (f(p�V �1 )) � Ex (f(V 1))j isuniformly small, but this is pre
isely a 
onsequen
e of what has just been proved.The proof for an arbitrary n is done by indu
tion. This 
ompletes the proof. �Corollary 4. If lim�!0p�V �0 = v; then, as � tends to 0, the Markov 
hain(p�V �n ) 
onverges in distribution to the Markov 
hain (V n) (See De�nition 2).Proof. Sin
e one has to prove the 
onvergen
e of the �nite dimensional distribu-tions, the 
orollary is a dire
t 
onsequen
e of Proposition 3 and Relation (5). �Proposition 5. If lim�!0p�W�0 = w; then the Markov pro
ess(W�(t)) = �p�W�bt=p�
�
onverges in distribution to the Markov pro
ess �W (t)� on [0; wmax℄ su
h thatW (0) = w and with the in�nitesimal generator given by(12) 
(f)(x) = f 0(x)1fx<wmaxg + Z x0 h(u) du �f(Æx)� f(x)� ;for any C1 fun
tion f on R+ .The Markov pro
ess (W�(t)) is right 
ontinuous with left limits everywhere.The 
onvergen
e mentioned in this proposition is the 
onvergen
e of probabilitydistributions on the spa
e of right 
ontinuous fun
tions on R+ with left limitsendowed with Skorohod topology. (See Billingsley [7℄ or Ethier and Kurtz [12℄ forthe de�nitions and results 
on
erning this topology).The distributions of the variables (Gx; x � 0) have the following remarkableproperty that for x, y � 0,P(Gx � y) = P(G0 � x+ y)P(G0 � x) :(See De�nition (6).) This property 
an be also seen as a 
onsequen
e of the Markovproperty of the asymptoti
 Markov pro
ess �W (t)� when the maximum window sizeis in�nite.
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10 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTProof. We shall assume that wmax is in�nite, the proof is analogous (even simpler)when this quantity is �nite. Basi
ally we shall prove that the in�nitesimal genera-tors 
onverge to the appropriate in�nitesimal generator. If this gives an indi
ationof the kind of results one might expe
t, to prove the 
onvergen
e rigorously someuniform 
onvergen
e has to be established. We shall use the 
riterion given byCondition (h) of Corollary 8.9 page 233 of Ethier and Kurtz [12℄ for the Markovpro
esses obtained from Markov 
hains.We denote and by C the set of C2-fun
tions f on R+ su
h that the 
onvergen
elimx!+1(1 +H(x)2) supu�x�1 jg(u)j = 0;(H is de�ned in Proposition 1), is true for g = f 0, f 00 and g(x) = f(Æx); C is analgebra that strongly separates the points, i.e. if x 2 R+ and Æ > 0 then thereexists f 2 C su
h that inf(jf(y)� f(x)j : jy � xj � Æ) > 0:Condition (h) of Ethier and Kurtz is applied by taking (in the notations of this
orollary) Gn = R+ , so that Equation (8.47) is automati
ally satis�ed.If P� is the transition matrix of the Markov 
hain (p�W�n ) andA� = (P� � I)=p�;where I is the identity; if we prove that for any f 2 C,(13) lim�!0 kA�(f)�
(f)k1 = lim�!0 supx�0 jA�(f)(x)�
(f)(x)j = 0;then Equation (8.48) of Condition (h) of Ethier and Kurtz is established, hen
e theCorollary 8.9 
an be applied and the 
onvergen
e is then proved.For x � 0 and f 2 C,A�(f)(x) = 1p� (f(x+p�)� f(x))P (G�x � 1)+ �f �p�bÆx=p�
�� f(x)� 1� P (G�x � 1)p� :For x � 0 the di�eren
e jA�(f)(x) � 
(f)(x)j 
an be bounded by the quantity�1(x) + �2(x), with�1(x) = ���� 1p� (f(x+p�)� f(x)) � f 0(x)����+ jf 0(x)j ����1� exp��p� Z x0 h(bu=p�
p�) du�����and�2(x) = ���f �p�bÆx=p�
�� f(Æx)��� Z x0 h(u) du+ (jf(Æx)j+ jf(x)j) ��������1� exp��p� Z x0 h(bu=p�
p�)� dup� � Z x0 h(u) du�������� :
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 11Taylor's formulas for f and x! exp(�x), the fa
t that f is in C and straightforward
al
ulations give the desired uniform 
onvergen
e (13). The proposition is proved.�The limiting Markov pro
ess grows deterministi
ally at rate 1 and jumps fromx to Æx with intensity R x0 h(u) du. It is easy to 
he
k that, starting from x > 0, theduration of time to jump downwards has the same distribution as Gx.3. Convergen
e of the invariant measuresWe are now interested by the equilibrium behavior of the AIMD algorithm. Upto now, a 
losed form expression for the invariant probabilities of the Markov 
hains(W�n ) and (V �n ) is not known, see Dumas et al. [9℄ for sto
hasti
 bounds in somespe
ial 
ases. The main results of this part 
on
ern the 
onvergen
e in distributionof these invariant probability measures when � tends to 0. As we shall see inSe
tion 4, the limiting probabilities have an expli
it expression in some 
ases ofpra
ti
al interest. For the moment we study the behavior of the embedded Markov
hain (V �n ).De�nition 6. If K � 0, T�K [resp. TK℄ is the hitting time of the interval [0;K℄ bythe Markov 
hain (p�V �n ) [resp. (V n)℄,T�K = inf �n � 1 : p�V �n � K	 and TK = inf �n � 1 : V n � K	 :Proposition 7. For � > 0, the Markov 
hain (V �n ) is ergodi
. When w�max = +1,there exist K, � and � > 0 su
h that for 0 < � < 1,(14) E �e�T�K��p�V �0 ���p�V �0 > K� � 1:Proof. The proof uses a Foster-like 
riterion to give an estimate of the exponentialmoment of T�K (see Meyn and Tweedie [18℄). For n 2 N, Fn denotes the �-�eldgenerated by the random variables V �0 ,. . .V �n�1, V �n .The Markov 
hain (V �n ) is 
learly irredu
ible and aperiodi
 on N � f0g. For� > 0 and n 2 N, de�ne Zn = exp(�p�V �n ). For K > 0, the inequalityE(Zn+1 � ZnjFn) � ZnE �e�(Æ�1)K+�Æp�G�V �n � 1� ;holds on the Fn-measurable event En def= fp�V �n > Kg, therefore if � < 1,E(Zn+1 � ZnjFn) � Zn0�e�(Æ�1)K sup0<�<1y�0 E �e�G�by=p�
�� 11Aholds on En. A

ording to Proposition 1, we 
an �x � < �0 so that there exists a
onstant C satisfyingE(Zn+1 � ZnjFn) � Zn �Ce�(Æ�1)K � 1� ;on En for all � 2℄0; 1[. Consequently, there exist some K0 > 0 and � < 1 su
h that(15) E(Zn+1 jFn) � �Zn; on the event fp�V �n > Kg;for K � K0. The inequality (15) implies that if p�V �0 > K, the sequen
e(Un) = ���n^T�KZn^T�K�
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12 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTis a super-martingale with respe
t to (Fn) (sin
e the relation T�K > n implies thatthe inequality p�V �i > K holds for i � n). Hen
e for n � 0,E ���n^T�K ���F0� � E ���n^T�KZn^T�K ���F0� = E(Un jF0) � U0 = e�p�V �0 :By letting n go to in�nity we get the inequalityE ���T�K ���F0� � e�p�V �0on the event fp�V �0 > Kg. The proposition is proved. �Proposition 8. The 
ontinuous state spa
e Markov 
hain (V n) is Harris ergodi
.If V1 is some random variable distributed as the invariant probability of (V n), itsatis�es the following identity(16) V1 dist.= Æmin�V1 +GV1 ; wmax�where (Gx; x � 0) are random variables independent of V1 whose distributions aregiven by the relation (6).For the general de�nitions and results 
on
erning Markov pro
esses with a 
on-tinuous state spa
e, see Nummelin [19℄.Proof. Sin
e the transition of the Markov 
hain has a 
ontinuous density, it is aHarris 
hain (See Durrett [10℄ page 326). It is easily seen that for any x � 0,then P(G0 � y) � P(Gx � y) for y � 0; Gx is sto
hasti
ally bounded by G0.Thus we 
an 
onstru
t a sequen
e (Zn) and an i.i.d sequen
e (G0;n) with the samedistribution as G0 su
h that Z0 = V 0,Zn+1 = Æ(Zn +G0;n) and V n � Zn;for all n 2 N. The sequen
e (Zn) is an AR pro
ess (Autoregressive) whi
h isHarris ergodi
 (see Durrett [ibid℄). Thus we get that the sequen
e of probabilitydistributions  1n nXk=1P �V k 2 � �!is tight; 
learly any limit of this sequen
e is an invariant probability distributionfor the Markov 
hain (V n). To 
on
lude, an Harris Markov 
hain with an invari-ant probability distribution is ne
essarily ergodi
. (See Durrett [10℄ Exer
ise 6.11page 330.)A

ording to De�nition (10) of the transitions of the Markov 
hain (V n), itsinvariant distribution satis�es the relation (16). �Theorem 9. When � tends to 0 the invariant distribution of the Markov 
hain(p�V �n ) 
onverges to the invariant distribution of the Markov 
hain (V n). Conse-quently, the following diagram 
ommutes,(p�V �n ) n!+1�����! p�V �1�!0 ??y ??y�V n� ����! V1:
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 13Proof. We denote by �� the invariant probability of (p�V �n ) and (Z�n ) is the se-quen
e of the su

essive elements of [0;K℄ visited by this Markov 
hain. In the restof the proof, for variables with index �, the notation E� (�) and P�(�) refer to theMarkov 
hain (p�V �n ) when the distribution of p�V �0 is �.Noti
e that if p�V �0 � K, then Z�0 = p�V �0 and Z�1 = p�V �T�K . With the sameargument as in the proof of Proposition 8 it easily seen that (Z�n ) is a Harris ergodi
Markov 
hain; ��K denotes its invariant probability, in parti
ular ��K [0;K℄ = 1. Theprobability �� 
an be represented as(17) E�� (f) def= ZR+ f d�� = 1E��K (T�K)E��K 0�T�K�1Xk=0 f �p�V �k �1A ;for any bounded measurable fun
tion f on R+ (see Asmussen [5℄ for example). Forthe asymptoti
 Markov 
hain, with the 
orresponding notations (� is the invariantprobability of (V n)), the following identity holds,(18) E� (f) = 1E�K �TK�E�K 0�TK�1Xk=0 f(V k)1A ;where �K is the invariant probability of (Zn) whi
h is the embedded Markov 
hainof the visits of (V n) in the set K.The proof of the Theorem 
onsists in showing that, for someK > 0, the left handside of (17) 
onverges to the left hand side of (18) when � tends to 0. To prove this
onvergen
e, the inequality (14) is used to trun
ate the sum under the expe
tationand the remaining terms are shown to 
onverge with the help of relation (11).The set of probability measures f��K ; � > 0g is obviously tight. Consequently,there exists a probability �K on [0;K℄ and a sequen
e (�n) 
onverging to 0 su
hthat (��nK ) 
onverges to �K .The probability �K is invariant for �Zn�.For n 2 N and a, x � K,P(T�K = n;Z�1 � a) = P �V �1 > K; : : : ; V �n�1 > K;V �n � a�A

ording to Proposition 3, when � goes to 0 this last quantity is 
onverging toP �V 1 > K; : : : ; V n�1 > K;V n � a� = P(TK = n;Z1 � a)uniformly on p�V �0 2 [0;K℄. In parti
ular the variables (T�nK ) [resp. (Z�n1 )℄
onverge in distribution to the variable TK [resp. Z1℄. By invarian
e, for � > 0,��nK ([a;+1[) = P��nK (Z�n0 � a) = P��nK (Z�n1 � a);the uniform 
onvergen
e gives the identity�K([a;+1[) = limn!+1P��nK (Z�n1 � a) = P�K (Z1 � a)The probability �K is therefore an invariant probability measure for the Markov
hain �Zn�; by uniqueness this implies that �K = �K . Thus, we have shown thatthe probabilities (��K ;� > 0) 
onverge to �K as � tends to 0.Proposition 7 shows that there exist 
onstants K, �, � > 0 su
h thatE �e�T�K��p�V �0 ���p�V �0 � K� � 1:
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14 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTThe Markov property gives the relatione��E��K �e�T�K� � 1 + E��K �e�p�V �1 Ep�V �1 �e�T�K��p�V �1 ���p�V �1 > K��� 1 + E��K �e�p�V �1 � � 1 + E��K �e�Æp�V �0 +Æ�p�G�V �0 �sin
e p�V �0 � K for the probability measure P��K ,e��E��K �e�T�K� � 1 + e�ÆKE��K �e�p�G�V�0 � ;and this quantity is bounded for 0 < � < 1, a

ording to the inequality (8) (by
hoosing � suÆ
iently small). With the initial distributions (��K), the variables(T�K ;� < 1) are therefore uniformly integrable, in parti
ularlim�!0 E��K (T�K) = E�K (TK);and for " > 0 there exists C > 0 su
h thatE�K �TK1fTK�Cg� � " and E��K �T�K1fT�K�Cg� � ";for 0 < � < 1. From these estimates and the uniform 
onvergen
e of Proposition 3,for a bounded measurable fun
tion f , we dedu
e thatlim�!0 E��K 0�T�K�1Xk=0 f(V �k )1A = E�K 0�TK�1Xk=0 f(V k)1A ;as � goes to 0, hen
e a

ording to the identities (17) and (18), the probabilities(��;� > 0) 
onverge to � as � tends to 0. The theorem is proved. �Theorem 10. When � tends to 0 the invariant distribution of the Markov 
hain(p�W�n ) 
onverges to the invariant distribution of the Markov pro
ess (W (t)),�p�W�bt=p�
� t!+1����! p�W�1�!0??y ??y�W (t)� ����! W (1):Proof. The proof is similar to the proof of Theorem 9. Basi
ally the sums in (17)and (18) have to be repla
ed by integrals. �4. The representation of the limiting invariant measuresIn this se
tion we shall 
onsider the 
ase when h � 1; the loss probability is a
onstant for all pa
kets. In this 
ase, for x � 0, the distribution of Gx is given by(19) P(Gx � y) = e�xy�y2=2;for y � 0. The in�nitesimal generator 
 given by (12) of the asymptoti
 Markovpro
ess is given by(20) 
(f)(x) = f 0(x)1fx<wmaxg + x(f(Æx) � f(x)):The following simple proposition is 
ru
ial to get the stationary behavior of AIMDalgorithms analyzed in this se
tion.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 15Proposition 11. For x > 0, if the distribution of a random variable Gx is givenby (19), the following identity holds(21) �x+Gx�2 dist.= 2E1 + x2;where E1 an exponentially distributed random variable with parameter 1.Proof. For y � 0, the relation (19) givesP((x+Gx)2 � y + x2) = e�y=2;and the result follows. �We �rst study the 
ase of the in�nite maximum window size. The 
hara
teristi
sof the system at equilibrium (invariant probability, throughput) have rather simple
losed form expressions. The 
orresponding expressions for the �nite maximumwindow size 
ase are still expli
it but more intri
ate.4.1. In�nite maximum window size.The embedded Markov 
hain. The following proposition gives a probabilisti
 repre-sentation of V1 when the maximum window size is in�nite. Its analyti
 
ounterpartis Proposition 13 below. It shows that the square of the limiting embedded Markov
hain is an AR pro
ess. To our knowledge, this 
ru
ial property does not seemto have been remarked previously. The AR property is the key 
hara
teristi
 ofthe AIMD 
ontrol s
heme. As we shall see later the AR property has important
onsequen
es on the qualitative behavior of TCP. In parti
ular it implies that thetail distribution of the size of the 
ongestion window de
ays as exp(��x2). Thisindi
ates that the probability of having large windows is rapidly de
reasing andthat the steady state probability distribution is 
on
entrated on relatively smallvalues of the 
ongestion window size.Proposition 12. When the maximum window size is in�nite, wmax = +1, thesquare of the Markov 
hain (V n) is an AR pro
ess with the following representation:for n 2 N, V 2n+1 = Æ �V 2n + 2En�where (En) is an i.i.d. sequen
e of exponentially distributed random variables withparameter 1.Its invariant probability 
an represented by the random variable V1 satisfyingrelation (16)(22) V1 dist.= vuut2 +1Xn=1 Æ2nEn:Proof. From relation (10) we getV n+1 dist.= Æ �V n +GV n� ;where the variables (Gg ; x > 0) are independent of V n. Therefore Proposition 11gives the identity V 2n+1 dist.= Æ2 �V 2n + 2En� ;
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16 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTwhere En is an exponential variable with parameter 1. The AR property is proved.At equilibrium, using relation(16), the 
orresponding equation isV 21 dist.= Æ2 �V 21 + 2E1� :If this relation is iterated, one gets identity (22) (the residual term Æ2nV 21 
onvergesin distribution to 0). �From the above proposition one 
an derive the density of the limiting randomvariable V1.Proposition 13. The density fun
tion of V1 when the maximum window size isin�nite is given by, for x � 0,(23) hÆ(x) = 1Q+1n=1(1� Æ2n) +1Xn=1 1Qn�1k=1 (1� Æ�2k)Æ�2nxe�Æ�2nx2=2:Proof. Let eV1 denote the Lapla
e transform of the random variable V 21=2, whi
his de�ned for � 2 C with <(�) � 0 byeV1(�) = E �e��V 21=2� :A dire
t 
onsequen
e of the independen
e of the exponential random variables (En)in equation (22) is that eV1(�) = 1Yk=1 1(1 + Æ2k�) :The Lapla
e transform eV1 has simple poles lo
ated at the points f�1=Æ2n; n � 1g.For n � 1, the residue of eV1 at �1=Æ2n is given by1Æ2n n�1Yk=1 1(1� Æ2k=Æ2n) 1Yk=n+1 1(1� Æ2k=Æ2n) = Æ�2nQn�1k=1 (1� Æ�2k) 1Q1k=1(1� Æ2k) :It follows thateV1(�) = 1Q1k=1(1� Æ2k) +1Xn=1 1Qn�1k=1 (1� Æ�2k) Æ�2n� + Æ�2n ;hen
e the density of V 21=2 is given by, for x � 0,1Q1k=1(1� Æ2k) +1Xn=1 1Qn�1k=1 (1� Æ�2k)Æ�2ne�Æ�2nx:This 
ompletes the proof of the proposition. �As shown by the pi
ture below the distribution of V1 is sharply 
on
entratednear the origin. Its tail distribution is equivalent to Cx exp(�Æ2x2=2) as x getslarge.
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0.5 1 1.5 2 2.5Figure 2. The density of V1 for Æ = 1=2The throughput.De�nition 14. For � > 0, the throughput of the algorithm is de�ned as the limit��(Æ) = limn!+1 1n nXi=1W�k :This de�nition assumes that the round trip time (RTT) is taken equal to 1. Thus,up to this fa
tor, this is the de�nition of the literature. The ergodi
 theorem forthe Markov 
hain (W�n ) gives that ��(Æ) = E(W�1 ). Using the embedded Markov
hain (V �n ) it is easily seen that the throughput 
an also be written as��(Æ) = limn!+1 1Pn1 G�V �i nXi=1 G�V�i �1Xk=0 (Vi + k):From the ergodi
 theorem applied to the Markov 
hain (V �n ), we get �nally(24) ��(Æ) = E �PG�V�1�1k=0 (V �1 + k)�E �G�V �1� = E �2G�V �1V �1 + �G�V �1�2�2E �G�V �1� � 1=2:Proposition 15. The asymptoti
 throughput of an AIMD algorithm with multi-pli
ative de
rease fa
tor Æ is given by(25) �(Æ) def= lim�!0p���(Æ) = Æ(1� Æ)E �V1� =r 2� Q+1n=1 �1� Æ2n�Q+1n=0 (1� Æ2n+1) :Proof. By de�nition of the throughput, we have��(Æ) = �1=2+ E ��V �1 +G�V �1�2 � (V �1)2�� 2E �G�V �1� :
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18 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTIdentity (16) shows that��(Æ) = �1=2+ E �(V �1)2(1=Æ2 � 1)�Æ 2E �G�V �1�= (1 + Æ)E((V �1 )2)2Æ(1� Æ)E(V �1 ) � 1=2:A

ording to Theorem 9, the following 
onvergen
e holdslim�!0p���(Æ) = (1 + Æ)E �V 21�2Æ(1� Æ)E(V 1) = Æ(1� Æ)E(V 1) ;where the last relation is a 
onsequen
e of representation (22). The quantity E(V 1)is obtained with expression (23) of the density hÆ. The relationZ +10 Æ�2nx2 exp(�Æ�2nx2=2) dx =r�2 Æn;for n � 1 and Euler's identity (see Erdelyi [11℄ formula (25) page 261),(26) +1Xn=0 xn(n+1)=2tnQnl=1(1� xl) = +1Yl=1 �1 + txl�applied for x = Æ2 and t = �Æ give the �nal formula for the throughput. �Note that Ott et al. [20℄ obtained expressions similar to (23) and (25) for a
ontinuous system, des
ribed as the solution of a deterministi
 di�erential equationperturbated at the points of a Poisson pro
ess. For the �nite time behavior, thissystem 
an be 
onsidered as a limit of the original model. If we observe the systemat the level of the pa
kets instead of the su

essive 
ongestion windows, the pointsof the Poisson pro
ess are the instants, properly renormalized, when pa
kets arelost. At equilibrium there is no 
onvergen
e result for the invariant distributionssupporting the fa
t that this system may be seen as a limit of the original model.Te
hni
ally, the trouble 
omes from the deterministi
 di�erential equationx0(t) = a=x(t)
onsidered in that paper. It has a singularity when x(0) is 
lose to 0. In �nitetime, this singularity 
an be 
ontrolled; for the equilibrium, i.e. at t = +1, it isless 
lear how one 
an prove that the invariant probability distributions 
onvergeto the invariant probability measure of the perturbated di�erential equation.Remarks.a) For the 
ase of TCP, Æ = 1=2, the throughput is � 1:3098 whi
h is the valueobserved in earlier simulations and experiments (see Floyd [13℄, Floyd et al. [14℄and Madhavi and Floyd [17℄).b) Trite manipulations with the expression (25) of �(Æ) show that�(Æ) �s 2�(1� Æ)when Æ % 1. This does not mean that, in pra
ti
e, the throughput really in
reaseswith Æ. Indeed, the loss pro
ess is in fa
t also related to Æ. The model we 
onsiderdoes not take into a

ount this relation.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 19The 
ontinuous time pro
ess. The above results on the invariant distribution ofthe embedded Markov 
hain give the expression of the density of the invariantdistribution of the 
ontinuous time pro
ess (W (t)).Proposition 16. When the maximum window size is in�nite, the res
aled asymp-toti
 density fun
tion of the 
ongestion window size at equilibrium W1 is given by,for x � 0,(27) HÆ(x) = p2=�Q+1n=0(1� Æ2n+1) +1Xn=0 Æ�2nQnk=1(1� Æ�2k)e�Æ�2nx2=2:Proof. The 
lassi
al representation of the invariant measure of the 
ontinuous timepro
ess (W (t)) with the invariant probability of (V n) is given by(28) E �f �W1�� = 1E �GV1�E  Z GV10 f �V1 + s� ds! ;for any non negative measurable fun
tion f on R+ . The invarian
e relation (16)(with wmax = +1) gives the identityE �GV1� = 1� ÆÆ E �V1� ;the right hand side is pre
isely the inverse of the asymptoti
 throughput a

ordingrelation (25). If we take f(x) = exp(��x) for x in identity (28) and � � 0, theLapla
e transform of W1 is given byE �exp ���W1�� = �(Æ) E  Z GV10 exp ��� �V1 + s�� ds!= �(Æ)� �E �exp(��V1�� exp ��� �V1 +GV1��� :Relation (16) shows that this last expression isE �exp ���W1�� = �(Æ)� �E �exp(��V1��� E �exp ���V1=Æ��= �(Æ) E  Z V1=ÆV1 e��s ds!= Z +10 e��sP �V1 � s � V1=Æ� ds:From Relation (28) we get that the density of W1 is given byHÆ(x) = �(Æ)P �V1 � x � V1=Æ� = �(Æ)P �Æx � V1 � x� ;for x � 0. The expression (23) of the density of V1 is used to 
on
lude theproof. �4.2. Finite maximum window size.
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20 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTThe embedded Markov 
hain. In this se
tion, we assume that the res
aled maximumwindow size wmax is �nite. As we shall see, by using equation (16), it is alsopossible to expli
itly 
ompute the distribution of the limiting random variable V1.The following proposition is the analogue of Proposition 12, it gives an expli
itprobabilisti
 representation of V1.Proposition 17. If (Ei) is an i.i.d. sequen
e of exponential random variables withparameter 1, the invariant probability measure of the limiting Markov 
hain 
an berepresented as follows,(29) V1 dist.= vuut infn�0 Æ2nwmax + 2 nXi=1 Æ2iEi!;where (En) is an i.i.d. sequen
e of exponentially distributed random variables withparameter 1.Proof. From the identity (21) and Equation (16), we get that(30) V 21 dist.= Æ2min �w 2max; 2E1 + V 21� ;where E1 is an exponential random variable with unit mean, independent of V1.If we iterate this equation, by indu
tion we obtain that for N � 1,V 21 dist.= min0�n�N�1 Æ2nw 2max + 2 nXi=1 Æ2iEi! ^ Æ2NV 21 + 2 NXi=1 Æ2iEi! :The proposition follows by letting N go to in�nity. �Noti
e that when wmax goes to in�nity, the representation (29) 
onverges tothe expression (22) obtained for the in�nite window size. We now give the expli
itrepresentation of the distribution of V1. The equation (30) shows that this variablehas a mass at Æwmax. As we shall see in the next proposition, the distribution ofV1 is a 
onvex 
ombination of a Dira
 mass at Æwmax and a density fun
tion on[0; Æwmax℄.Proposition 18. The distribution of V1 has a mass � at Æwmax, with(31) 1=� = 1 + +1Yn=1(1� Æ2n) +1Xn=0 1Qnk=1(1� Æ2k) �eÆ2nw2max=2 � eÆ2(n+1)w2max=2�!and a density fun
tion ~hÆ on [0; Æwmax℄ given by(32) ~hÆ(x) = hÆ(x) + x� +1Xn=1�kn �x2 � Æ2(n+1)w2max�� kn �x2 � Æ2nw2max�� ;where hÆ is the density fun
tion given by (23) and for, n � 1, kn(2x) is the densityof Æ2E1 + � � � + Æ2nEn when the random variables (Ei) are i.i.d. exponentiallydistributed with parameter 1.The fun
tion kn 
an be expressed expli
itly as a linear 
ombination of the fun
-tions exp(�Æ�2kx), x � 0, k = 1; : : : ; n. (Noti
e that kn vanishes on R� ).With the expressions (31) and (32), it is easily seen that the distribution of V1
onverges to the distribution with density hÆ when wmax tends to in�nity.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 21Proof. If we set Z = V 21=2, � = Æ2 and w = � w2max=2, the relation (30) showsthat the variable Z satis�es the following relationZ dist.= min(�(Z +E); w);where E is an exponential variable with parameter 1 independent of Z. If � denotesthe Lapla
e transform of Z, the above equation 
an be written as, for � � 0,�(�) = E �e��Z� = E �e���(Z+E)1f�(Z+E)<wg�+ e��wP (�(Z +E) � w):By using the fa
t that E and Z are independent, we get�(�) = E  e���Z �1� e�(��+1)(w=��Z)�1 + �� !+ e��wE �e�(w=��Z)� ;(33)therefore,�(�) = 11 + �� �(��) + ��1 + �� e�(�+1=�)w�(�1);(34)if the above relation is used re
ursively, we obtain for n � 1,�(�) = 1Qnk=1(1 + ��k)�(��n) + �(�1)e�w=� n�1Xk=0 ��k+1Qk+1i=1 (1 + ��i)e���kw;sin
e �(��n)! 1 as n goes to in�nity (re
all that � < 1), the Lapla
e transform �
an be expressed as�(�) = 1Q+1k=1(1 + ��k) + �(�1)e�w=� +1Xk=0 ��k+1Qk+1i=1 (1 + ��i)e���kw:If we take � = �1 in this identity we get that1=�(�1) = 0�1 + e�w=�Xn�0 �n+1Qn+1k=1(1� �k)e�nw1A +1Yn=1(1� �n):If we set � = �(�1)e�w=�, then 
learly� = P(�(Z +E) > w) = P(V1 +GV1 > wmax) = P(V1 = Æwmax);a

ording to relation (30). It is then easily seen that � 
an be written as�(�) = 1Q+1k=1(1 + ��k) + � e��w + +1Xn=1 1Qni=1(1 + ��i) �e���nw � e���n�1w�! :The above Lapla
e transform is then easy to invert and yields the identity (32). �The throughput. With the same argument leading to the relation (24) for the in�nitemaximum window size, the throughput ��(Æ) (De�nition 14) 
an be expressed as��(Æ)E(�� ) = E  ���1Xk=0 W�k ! ;where �� is the �rst time there is a loss when the initial window size is V �1. Noti
ethat �� is G�V �1 only if a loss o

urs before (W�n ) hits the level w�max. When the
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22 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTmaximum window size is rea
hed, the window size remains 
onstant for a geometri-
ally distributed period H� with parameter exp(��w�max). This gives the followingidentities �� = G�V �11nV �1+G�V �1<w�maxo + (w�max � V �1 +H�) 1nV �1+G�V �1�w�maxo;(35) ���1Xk=0 W�k = V �1+G�V�1Xk=V �1 k +0�w�maxH� � V �1+G�V�1Xk=w�max k1A 1nV �1+G�V �1�w�maxo:(36)If �� is the probability of this event (by invarian
e �� = P(V �1 = Æw�max)), we get�E  ���1Xk=0 W�k ! = 12E ��p�V �1 +p�G�V �1�2�� 12E �(p�V �1)2�+ o(p�)+ ��p�w�maxE �p�H��� ��2 �E �p�w�max +p�G�w�max�2 � �p�w�max�2� ;this identity is a 
onsequen
e of the Markov property of (W�n ). The variable V �1 +G�V �1 
onditionally on the eventnV �1 +G�V �1 � w�maxohas the same distribution as w�max +G�w�max . The s
aling relation (4) for w�max im-plies that p�H� 
onverges in distribution to an exponentially distributed randomvariable with mean 1=wmax, using Theorem 9, we obtain(37) lim�!0�E  ���1Xk=0 W�k ! = 12 �E �V1 +GV1�2 � E �V1�2�+ � � �2 �E �wmax +Gwmax�2 � w 2max� = 1;by Proposition 11. Similarly for ��,�� = (w�max � V �1) ^G�V �1 +H�1nV �1+G�V �1�w�maxotherefore E (��) = E �w�max ^ �V �1 +G�V �1�� V �1�+ ��E (H�)= 1� ÆÆ E(V �1 ) + ��E (H�)by the invarian
e relation (16) for V �1.The following proposition is therefore a 
onsequen
e of the last identity andrelation (37).Proposition 19. If ��(Æ) is the throughput of an AIMD algorithm with multipli
a-tive de
rease fa
tor Æ and maximum window size w�max, then(38) lim�!0p���(Æ) = Æ(1� Æ)E(V 1) + Æ�=wmax ;the 
onstant � and the distribution of V1 are given by Proposition 18.The above formulas have been used in Figure 3 and 4 to represent the dependen
eof the throughput and � with respe
t to the maximum 
ongestion window size.
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Figure 3. The throughput for Æ = 3=20, 1=2 and 7=8
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Figure 4. The stationary probability of hitting the maximumwindow size before a loss5. The distribution of the hitting timesIn this se
tion we study the hitting time of some level by the size of the 
onges-tion window. Its pra
ti
al importan
e is fairly 
lear sin
e the performan
e of thetransmission is optimal when the maximal 
ongestion window is rea
hed.
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24 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTDe�nition 20. If x > 0, S�x is the �rst time (W�n ) rea
hes the level x=p�,S�x = inf �n � 1 :W�n � x=p�	 and Sx = inf �t > 0 :W (t) � x	The 
onvergen
e result of Proposition 5 gives the key to the limiting behaviorof S�x , it suggests that S�x is of order 1=p�. The next result show that this isindeed the 
ase. Moreover, the limiting distribution is expressed with the help ofan eigenve
tor of the in�nitesimal generator 
 de�ned by (12). These results arean illustration of the interest of the fun
tional limit theorems proved in Se
tion 2.Theorem 21. If lim�!0p�W�0 = x0 < W (0) = x, the variable p�S�x 
onvergesin distribution to Sx as � tends to 0. Its Lapla
e transform given by, for � � 0,E �e��Sx� = f�(x0)f�(x) ;where f� is the unique solution of the equation(39) f 0(y) + yf(Æy) = (� + y)f(y);with f(0) = 1.Proof. For a � 0, by de�nition�p�S�x > a	 = � sup0�t�ap�W�bt=p�
 < x� ;sin
e the fun
tion g ! supfg(u); 0 � u � ag is 
ontinuous on the Skorohod spa
eof fun
tions on R+ (see Ethier and Kurtz [12℄), Proposition 5 shows thatlim�!0P �p�S�x > a� = P� sup0�t�aW (t) < x� = P �Sx > a�the variable p�S�x 
onverges in distribution to Sx as � tends to 0.We now prove that equation (39) has a unique solution. If f is su
h a solution,taking g(y) = exp(�(� + y)2=2)f(y), we get the di�erential equation,g0(y) = �ye�(1�Æ)y(�+(1+Æ)y)=2g(Æy);hen
e(40) g(y) = e��2=2 � Z y0 ue�(1�Æ)u(�+(1+Æ)u)=2g(Æu) du:Sin
e Æ < 1, the above equation 
an be seen as a �xed point equation on the spa
eC([0; 1=2℄) of the 
ontinuous fun
tion on [0; 1=2℄. If  (g) denotes the right handside of (40), it is 
lear that  is a 
ontra
ting fun
tional on C([0; 1=2℄) endowedwith the uniform norm. The operator  has therefore a unique �xed point onC([0; 1=2℄). If g is this �xed point, then g 
an be 
ontinued on the real line. Fory 2 R+ , a

ording to (40), the value of g(y) is expressed with the values of g onthe interval [0; Æy℄. The existen
e and uniqueness of equation (39) are proved.Using expression (20) of the in�nitesimal generator 
, equation (39) 
an alsobe written as 
(f)(x) = �f(x) for x � 0. (Here wmax does not play a role, itis assumed to be in�nite). Using a 
lassi
al result on the martingales of Markovpro
esses (see Rogers and Williams [23℄ for example), we get that�e�� t^Sxf �W (t ^ Sx)��
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 25is a lo
al martingale. Sin
e f is 
ontinuous on [0; x℄, this lo
al martingale is boundedhen
e a regular martingale, thereforef(x0) = E �e�� Sxf �W (Sx)�� = f(x)E �e�� Sx� :The theorem is proved. �We have not been able to �nd a 
losed form expression for the solution of equa-tion (39). Nevertheless it is possible to get some expli
it results on the distributionof the hitting times (Sx). If f is the solution of the following equation, for x > 0,
(f)(x) = 1;with f(0) = 0, when W (0) = x0 < x the same arguments as in the proof of theprevious theorem show that E(Sx) = f(x) � f(x0). The fun
tional equation tosolve is f 0(x) + x(f(Æx) � f(x)) = 1;for x � 0, with f(0) = 0. If g(x) = exp(�x2=2)f(x), then this equation be
omes(41) g(x)� Z x0 e�u2=2 du =  (g)(x) def= � Z x0 ue�(1�Æ2)u2=2g(Æu) du;for x � 0. As before this �xed point equation has a unique solution whi
h 
an beobtained by iteration. If this equation has some similarity with identity (40), itssolution 
an be represented expli
itly with the following tri
k. For a, b 2 R+ , wedenote by H [a; b℄ the fun
tionH [a; b℄(x) = e�ax2=2 Z x0 e�bu2=2 du;for x � 0; the operator  applied to H [a; b℄ gives the relation(42)  (H [a; b℄) = Æa+ 1� Æ2 �H �a+ Æ2b+ 1� Æ2; Æ2b��H �0; a+ Æ2b+ 1� Æ2�� :De�nition 22. The 
ountable subset T of R2+ and the fun
tion L : T ! R+ arede�ned as follows:| (0; 1) 2 T and L((0; 1)) = (1� Æ2)=(1 + Æ � Æ2);| if z = (a; b) 2 T then the elements e0(z) = (a + Æ2b + 1 � Æ2; Æ2b) ande1(z) = (0; a+ Æ2b+ 1� Æ2) are also in T withL(ei(z)) = (�1)iÆa+ 1� Æ2L(z);for i = 0 and for i = 1 if z 6= (0; 1).In this manner T has a binary natural tree stru
ture with (0; 1) as the an
estor,the 
hildren of z 2 T are e0(z) and e1(z). Noti
e that the fun
tion z ! e0(z) has no�xed point and (0; 1) is the only one for z ! e1(z) If we 
ombine the representationof the solution of the equation (41) by iteration together with the identity (42), weobtain the following proposition.



www.manaraa.com

26 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTProposition 23. If W (0) = x0 < x then E(Sx) = f(x)� f(x0) with(43) f(x) = ex2=2Xz2T L(z)h[z℄(x);where h[z℄(x) = e�ax2 Z x0 e�bu2 du;if z = (a; b) and the set T and the fun
tion L(�) are given by de�nition 22.We �nish by an estimation of the mean value of Sx, it 
an be re�ned with anarbitrary pre
ision by using the above proposition.Corollary 24. With the notation of the above proposition, if W (0) = 0, the in-equality m(x) � E �Sx� �M(x) holds, withm(x) = ex2=21� Æ2 �(1� Æ � Æ2) Z x0 e�u2=2 du+ Æ Z x0 e�Æ2u2=2 du� ;M(x) = ex2=2 Z x0 e�u2=2 du:Proof. Sin
e the solution of the �xed point equation (41) is 
learly non negative,the relation g(x) � Z x0 e�u2=2 du;holds, therefore the upper bound is true. This inequality applied in the right handside of (41) gives the lower bound. �The set T is apparently not easy to des
ribe expli
itly (if we forget the treestru
ture).
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 27Theorem 25. If lim�!0p�V �0 = x0 < x, the variables ��x , � > 0 
onverges indistribution to �x when � ! 0. The generating fun
tion of �x is given by, for0 < u < 1,(44) E �u�x� = fu(x0)fu(x) ; with fu(x) =Xn�0 un+1Qnk=1(1� Æ2k)ex2Æ2n=2;Proof. The 
onvergen
e is fairly 
lear from Corollary 4. The equation(45) u E �f �V 1���V 0 = x� = f(x)is equivalent to f 0(x) = xf(x)� uxf(Æx):The fun
tion de�ned by (44) 
learly satis�es su
h an equation, therefore the iden-tity (45) implies that the sequen
e�un^�xfu �V n^�x��is a bounded martingale, we 
on
lude by taking its expe
ted value at in�nity. �Referen
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