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A MARKOVIAN ANALYSIS OF ADDITIVE-INCREASEMULTIPLICATIVE-DECREASE (AIMD) ALGORITHMSVINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTAbstrat. The Additive-Inrease Multipliative-Derease (AIMD) shemesdesigned to ontrol ongestion in ommuniation networks are investigatedfrom a probabilisti point of view. Funtional limit theorems for a generallass of Markov proesses that desribe these algorithms are obtained. Theasymptoti behavior of the orresponding invariant measures is desribed interms of the limiting Markov proesses. For some speial important ases,inluding TCP ongestion avoidane, an important AR (Autoregressive) prop-erty is proved. As a onsequene, the expliit expression of the related invari-ant probabilities is derived. The transient behavior of these algorithms is alsoanalyzed. Contents1. Introdution 12. A generalized Markovian model 5Convergene to a Markov proess in �nite time 63. Convergene of the invariant measures 114. The representation of the limiting invariant measures 144.1. In�nite maximum window size 154.2. Finite maximum window size 195. The distribution of the hitting times 23Referenes 271. IntrodutionThis paper investigates the mathematial struture underlying the so-alled ad-ditive -inrease multipliative-derease (AIMD) window based ow ontrol shemesused in data transmission. With the emergene of TCP (Transmission ControlProtool) as the ubiquitous data transfer protool, the study of these algorithmsis ruial to understand the omplex behavior of modern ommuniation networks.Keeping in mind that TCP is one of the AIMD algorithms, using the language ofommuniation networks, these algorithms an be desribed as follows. When apaket is sent, it is aknowledged by the destination when reeived. To ontrol thereeption of pakets by the destination, there is a paket loss detetion mehanismused in the AIMD sheme. This mehanism is able to detet lightweight loss (theloss of a single paket from time to time) as well as heavy loss (for instane in theDate: November, 21 2001.1991 Mathematis Subjet Classi�ation. Primary 60K30, 90B18; Seondary 68M12.Key words and phrases. TCP. Convergene of invariant probabilities. Auto-Regressive pro-esses. Hitting times. Network protools.Partially supported by the ontrat 00-1B320 with Frane Teleom and the Future and Emerg-ing Tehnologies programme of the EU under ontrat number IST-1999-14186 (ALCOM-FT).1
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2 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTase of severe ongestion in the network). In the ase of TCP, lightweight loss isdeteted through dupliated aknowledgements while heavy loss detetion is per-formed through a time-out mehanism. In the following, we onsider the ase oflightweight loss only.To simplify the desription, we shall assume that the round trip time (RTT)between the soure and the destination is onstant. The soure maintains a variableW referred to as the ongestion window size whih ontrols the transmission ofpakets over an RTT interval. When W pakets are sent to the destination duringan RTT interval, the soure detets if one of them has been lost. If there is aloss, the variable W is hanged to bÆW  for the next RTT interval, Æ 2℄0; 1[ is themultipliative onstant whih derements the window size; in this ase the numberof pakets sent during the next yle is drastially redued. If all the pakets aresuessfully transmitted, W is just inremented by some value � > 0 if it does notexeed some maximal value wmax, the maximal ongestion window size. This is ofourse a simpli�ation of the real algorithms involved, but the basi mehanism ofreduing the ongestion (alled ongestion avoidane) is aptured by this model.See Jaobson [15℄, Allman et al. [2℄ and Stevens [24℄ for more details.Roughly speaking, the motivation of this algorithm an be desribed as follows:the loss of pakets in the network is mainly due to bu�er overow in the nodes of thenetwork. If the ongestion window of many soures in the network is large, thesesoures will send many pakets at approximately the same time and, very likely,they will reate more and more overow and thus more and more retransmissions, iftheir respetive window sizes are not redued very quikly. Multipliative dereaseis a way of rapidly ooling down ongestion. The additive inrease an be seen asa very progressive test of the ongestion of the network.A Markovian representation. The model onsidered in the paper desribes theexhange of pakets between the soure and the destination. Eah paket has someprobability of being lost and the probability that pakets are lost are independent.(In setion 2 we onsider a more general loss model.) The inuene of the net-work is desribed through this loss proess. With this assumption, the sizes of theongestion windows over the suessive RTT intervals is a Markov hain (Wn).The transitions of the Markov hain (Wn) are desribed by: if W0 = x � 1,(1) W1 = (min (bx+ �; wmax) with probability exp(��x)max (bÆx; 1) otherwise,where � > 0, 0 < Æ < 1 and � > 0; bx is the integer part of x. The quantityexp(��) is the probability that a paket is not lost in the network and, assumingindependene of the losses, exp(��x) is the probability that all the x pakets ofthe window are suessfully transmitted. In this model the interation betweenthe network and the data transfer is represented only through losses of pakets.The onstant wmax is the maximal ongestion window size, only determined by thedestination.When W0 is very large, the drift E(W1 �W0) of the Markov hain is equivalentto �(1 � Æ)W0; it implies that the Markov hain annot travel very far from theorigin, in partiular it is ergodi. (See the details below.) Thus, the long termbehavior of the soure is mainly driven by the invariant measure (�n) of (Wn). Fora �xed �, very little is known about this invariant probability, Dumas et al. [9℄gives stohasti bounds for (�n) whih are aurate when the loss rate is not small.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 3In pratie, hopefully, the loss rate will be small in the network. This suggeststo look at the limiting behavior of this Markov hain when � tends to 0. This isthe main topi of this paper. This topi is not new and has been studied in greatdetails in the tehnial literature (see the setion on related works below). Theontribution of the present paper to the modeling of TCP is in that it takes bene�tas far as possible of the Markovian struture of the ongestion avoidane regimein order to derive rigorous onvergene results and to derive losed formul� forthe mean throughput of a TCP onnetion with or without upper bound for theongestion window size. Moreover, still owing to the Markovian struture of thesystem, it is possible to arry out a transient analysis of the ongestion avoidaneregime. In partiular, we ompute the distribution of the duration of time neessaryto reah the maximal ongestion window size (Setion 5).Related work. Floyd [13℄, Floyd et al. [14℄ and Madhavi and Floyd [17℄ ana-lyze the impat of AIMD algorithms through simulations and some approximatedmodels.Padhye et al. [21℄ onsiders a detailed model of the evolution of TCP. Usinga �nite Markov hain taking into aount the key features of TCP (window sizeredution, time out, et.), they express some of the stationary harateristis of theprotool. In partiular, they obtain a losed formula for the throughput of a TCPonnetion, whih has beome entral in the �eld of TCP modeling. While theresults obtained in [21℄ rely on an approximation of the di�erent harateristis ofa �nite state Markov hain (in partiular its steady state distribution), we exploitas far as possible in this paper the Markovian struture of the ongestion avoidaneregime to establish rigorous onvergene results when the loss probability tendsto 0. Moreover, we take into aount a possible upper bound for the maximumwindow size. With regard to the throughput, this does not simply translate intoa trunation of the throughput formula obtained when there is no upper bound.In fat, the presene of the upper bound for the maximum window size a�ets thewhole distribution of the steady state probability distribution of the ongestionwindow size in an intriate way.Via a di�erent approah, Ott et al. [20℄ analyzes the evolution of the size of theongestion window as the perturbation of a deterministi di�erential equation by aPoisson proess when the loss rate is small. In this setting they are able to give adetailed desription of the invariant measure when � tends to 0. Altman et al. [4℄extended some of these results to study the ase of a �nite maximal ongestionwindow. The model onsidered by Ott et al. [20℄ an be seen as an approximationof the model onsidered here (when the window size is in�nite) but at a di�erenttime sale (or, more aurately, paket granularity). It is not lear for us how oneould justify the approximation of the invariant probabilities in this setting (seeSetion 4).Along the same lines of investigations, Adjih et al. [1℄ gives an asymptoti expres-sion of the invariant measure of the size of the ongestion window. They spei�allystudy a large number of TCP onnetions multiplexed in a single bu�er and thenperform asymptoti analysis via a mean �eld tehnique. Altman et al. [3℄ give somemoments of the window size at equilibrium with the assumption that the evolutionof the size of the ongestion window is an autoregressive proess. If we indeedprove in our paper that an autoregressive proess indeed plays a role, it does notseem to be related to the proess introdued in [3℄ (see Propositions 12 and 13).
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4 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTBaelli and Hong [6℄ onsiders an algebrai setting desribing preisely TCP whenthe input is deterministi or periodi.Finally, while most of studies (inluding this one) assume �xed round trip times,the ase of several TCP onnetions with di�erent round trip times multiplexedon a link has been analyzed by Brown [8℄ via a uid-based model. In partiular,this analysis shows how the di�erent onnetions oupy the link and the ritialimpat of round trip times and the size of the bu�er on the performane of thesystem (e.g., the link utilization and the onnetion throughputs).So far, we have disussed studies on the performane of TCP onnetions. ButTCP as well as any other prootol used for arrying elasti traÆ poses more generaland very interesting problems with regard to fairness at the network level. Di�erentstudies have addressed this issue in the reent past (see for instane Kelly [16℄,Roberts and Massouli�e [22℄,Vojnovi� et al. [26℄). The problem of fairness alsoappears in the design of transmission protools, whih roughly behave as TCP(TCP friendly protools). See for instane Vojnovi� and Le Boude [25℄ for amathematial formulation of the problem.The results of the paper. Two Markov hains are onsidered in this paper (W�n )desribing the evolution of ongestion window size over the suessive RTT intervalsand (V �n ) whih is the embedded Markov hain of (W�n ) observed when a paketis lost. In a quite general framework we prove the onvergene in distribution oftheir invariant probability measures properly resaled when the loss rate � goesto 0, i.e. the following onvergenes in distribution lim�!0p�W�1 = W1 andlim�!0p�V �1 = V1 (Theorem 9 and Theorem 10).When the loss probability per paket is onstant, an interesting AR (Auto-Regressive) property of the Markov hain �(V �n )2�) holds when � is lose to 0.This result and the onvergene results give the key to most of the expliit alu-lations of distributions: the distribution of V1 (Propositions 13 and 18), of W1(Proposition 16) and the asymptoti throughput of the algorithm (Propositions 15and 19).This AR property does not seem to have been earlier identi�ed in the literature.This is a real bene�t of the approah of this paper to onsider the onvergene ofthe omplete dynamis of the system rather than analyzing only the onvergene ofthe invariant probability distribution when � tends to 0. In some of the studies ofTCP (e.g. [3℄), the AR property is assumed, not for ((Vn)2) but for (Vn). It turnsout that this assumption seems to lead a di�erent onstant for the throughput, 1:22instead of the onstant derived here 1:3098, already observed by Floyd et al. Moreimportant, when the maximum ongestion window is in�nite, the equilibrium hasan exponential tail distribution instead of quadrati exponential in our ase (i.e.� exp(�Cx2)), the number of large ongestion windows is thus signi�antly smallerfor the model onsidered here.To our knowledge the transient behavior of AIMD algorithms has not been in-vestigated through analytial models. For example, the time to reah the maximalongestion window is learly an important harateristi. This measure illustratesthe performane of the AIMD sheme in the sense that it indiates how long ittakes, after a perturbation ausing lightweight paket loss, to reover the maxi-mal throughput obtained when the ongestion window size is equal to the maximalvalue. For the moment it has not reeived muh attention in the stohasti models.Some results in this domain are derived with our approah.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 5Organization. In Setion 2 we prove the main onvergene results of this paper:onvergene in �nite time of the Markov proesses. More important, onvergeneof the orresponding invariant distributions is shown in Setion 3. In Setion 4the expliit expression of the orresponding invariant distributions is derived. Theformulas for the asymptoti throughput are obtained and disussed. Setion 5 givessome results onerning the transient behavior of TCP, in partiular the hitting timeof the maximal ongestion window size is investigated.2. A generalized Markovian modelIn this setion, with the terminology of ommuniation networks, we onsiderthe sequene (W�n ) desribing the size of the ongestion window over the suessiveRTT intervals. It is assumed that the round trip time is large and the state ofthe network evolves suÆiently rapidly so that the paket loss events in one RTTinterval do not depend on the ontiguous RTT intervals.Sine we are interested in the asymptoti regime when the loss probability tendsto 0 and thus when paket loss rarely ours so that it is reasonable to assume thatthere is a single window redution in an RTT, we diretly onsider the sequene(W�n ) desribed as a Markov hain with the following transitions: if W�0 = n � 1,(2) (W�1 = min(n+ 1; w�max); with probability Qni=1 exp(�h�i );W�1 = max (bÆn; 1) ; otherwise :The quantity exp(�h�i ) is the probability that during an RTT interval the ithpaket is not lost when i� 1 pakets have been suessfully transmitted. We shallassume that for i 2 N,(3) h�i = �h �ip�� ;where h is a non identially 0, ontinuous, non dereasing funtion on R+ . Inpartiular, for x � 0, lim�!0 h�bx=p�� = h(x):The parameter � ontrols the loss rate of the algorithm. The original model (1)orresponds to the ase where h is onstant equal to 1.With this model, it is impliitly assumed that the probability of loss of a paketis non dereasing with respet to its index in the urrent window. (As the numberof pakets in the network grows, the more likely they will be lost). The onstantw�max 2 N [ f+1g is the maximal window size, it is assumed that it satis�es thefollowing saling relation with �,(4) lim�!0p� w�max = wmax:Without loss of generality for the asymptoti results we are onsidering, the additiveonstant � of the transitions (1) an be taken equal to 1.The embedded Markov hainIt is natural to onsider the state of the Markov hain (W�n ) just after a loss.The assoiated proess is denoted by (V �n ), this is learly a Markov hain whosetransitions are given by, if V �0 = n � 1(5) V �1 = bÆmin (n+G�n ; w�max) _ 1
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6 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTwhere x _ 1 = max(x; 1) and the random variable G�n is de�ned byP(G�n � m) = n+m�1Yk=n kYj=1 exp(�h�j );form � 1 and n � 1, reall thatQkj=1 exp(�h�j ) is the probability that a ongestionwindow of k pakets is suessfully transmitted over an RTT interval. The quantityG�n is the number of ongestion windows sent suessfully when the initial windowsize is n. With the above equation it is easy to hek that the random variable G�nis stohastially dereasing with n beause h is non dereasing. Roughly speakingthe number of suessful onseutive windows is smaller when the starting point ishigher. 6

-���� �������
� ���� �����

(W�n )
V �0

w�max
V �1 V �2 V �3 nFigure 1. Evolution of the ongestion window sizeConvergene to a Markov proess in �nite time. We now show that theMarkov hains desribed above are of the order 1=p� when � tends to 0. The nextproposition shows that p� is indeed the right saling for the embedded Markovhain.Proposition 1. For x > 0, as � goes to 0, the random variable p�G�bx=p�onverges in distribution to a non negative random variable Gx suh that for y � 0,(6) P �Gx � y� = exp�� Z x+yx H(u) du� ;with H(u) = Z u0 h(v) dv, and for any K > 0,(7) lim�!0 supp��x;y�K ���P �Gx � y�� P�p�G�bx=p� � y���� = 0:Moreover, there exists �0 > 0 and �0 > 0 suh that for � < �0,(8) sup0<�<�0 supx�p� E �e�p�G�bx=p�� < +1:
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 7When h � 1, the distribution of the random variable Gx is given by, for y � 0,P �Gx � y� = exp ��y2=2� xy� :Proof. For x, y � p� and � 2℄0; 1[, we haveP�p�G�bx=p� > y� = P�G�bx=p� > by=p� � = bx=p�+by=p�Yk=bx=p� kYj=1 exp(�h�j );thereforelogP�p�G�bx=p� > y� = � bx=p�+by=p�Xk=bx=p� kXj=1 �h(jp� )= � bx=p�+by=p�Xk=bx=p� p� Z kp�0 h(p�dv=p� e) dv= � Z p�(bx=p�+by=p�)x Z p� bu=p�0 h(p�dv=p� e) dv du:This implies Relation (6). The uniform ontinuity of h over ompat intervalsimplies that h(p�d�=p�e) onverges uniformly on [0;K℄ to h as � tends to 0, usingthat for u 2 R, ju�p�bu=p� � p�, we getlim�!0 supu�K �����Z p� bu=p�0 h(p�dv=p� e) dv � Z u0 h(v) dv����� = 0;onsequently,lim�!0 supp��x;y�K ���logP�p�G�bx=p� > y�� logP �Gx � y���� = 0:From the uniform ontinuity of the exponential funtion on ℄�1; 0℄, the uniformonvergene (7) is then easily obtained.Sine the funtion h is non dereasing, the above identity shows that for x � 0,K > 0 and y � 1,logP�p�G�bx=p� > y� � � Z y�11 Z K^p� bu=p�0 h(p�dv=p� e) dv du:If �0 is the integral of h on R+ , then for � < �0 there exists K > 0 and "0 > 0 suhthat(9) � < Z K0 h(u) du� "0;using again the uniform onvergene of h(p�d�=p�e) on the interval [0;K℄, onegets that there exists some y0 > 0 and �0 > 0 suh that for y � y0,sup0<�<�0 supx�0 1y logP�p�G�bx=p� > y� � � Z K0 h(v) dv + "0
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8 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTonsequently, for y � y0,P�p�G�bx=p� > y� � exp y "0 � Z K0 h(v) dv!! ;hene, Inequality (9) gives the relationsup0<�<�0 supx�0 Z +12 e�yP�p�G�bx=p� > y� dy < +1:Sine, by Fubini's Theorem,Z +12 e�yP�p�G�bx=p� > y� dy = E  Z p�G�bx=p�2 e�y dy!the above inequality yieldssup0<�<�0 supx�0 E �e�p�G�bx=p�� < +1:The proposition is proved. �Notie that the saling p� does not depend on the partiular hoie of h. Thesaling of h in h�i = �h (ip�) determines the orret pro�le for the spae depen-dene of the loss probability. One an introdue the following Markov hain, as weshall see, this is the asymptoti embedded Markov hain when � tends to 0.De�nition 2. The sequene (V n) denotes a Markov hain whose transitions aregiven by(10) V 1 = Æmin �V 0 +GV 0 ; wmax� ;where �Gx; x > 0� is a family of random variables independent of V0 suh that, forx > 0, the distribution of Gx is given by Relation (6).Proposition 3. For any ontinuous funtion f on R+ with ompat support, thefollowing onvergene holds,(11) lim�!0 supx�p� ��E �f �p�Gbx=p���� E �f(Gx)��� = 0:If for x > 0, Px denotes the probability suh that V �0 = bx=p� for all � > 0 andV 0 = x, then for n 2 N and a1, . . .an 2 R+ ,lim�!0 supx ��Px �p�V �1 � a1; : : : ;p�V �n � an�� Px �V 1 � a1; : : : ; V n � an��� = 0Proof. If f is a C1 funtion on R+ with support in [0;K℄, K > 0, the identitiesdK=p�eXk=2 (f(kp�)� f((k � 1)p�))P(Y � kp�) = E �f(Y )� f(p�)� ;for Y = p�Gbx=p� and Y = Gx are easily veri�ed. The uniform ontinuity of f 0on R+ and the estimate (7) give the desired onvergene (11). If f is a ontinuousfuntion with ompat support in [0;K℄, it an be approximated uniformly by C1funtions. For " > 0 there exists a C1 funtion g on [0;K℄ suh that sup(jf(x) �g(x)j;x � K) � ", hene��E �f �p�Gbx=p���� E �f(Gx)��� � 2"+ ��E �g �p�Gbx=p���� E �g(Gx)��� :
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 9The �rst part of the proposition is proved.We shall prove the last part of the proposition for n = 2, i.e.lim�!0 supx ��Px �p�V �1 � a1;p�V �2 � a2�� Px �V 1 � a1; V 2 � a2��� = 0:Beause of the transitions of the Markov hains, it is suÆient to show that for anya1, a2 � wmax, the following onvergene holdslim�!0 supx ���Px �p�V �1 � a1;p�V �1 +p�G�V �1 � a2�� Px �V 1 � a1; V 1 +GV 1 � a2��� = 0:SinePx �p�V �1 � a1;p�V �1 +p�G�V �1 � a2�= Z a10 P�y +p�G�by=p� � a2�Px(p�V �1 2 dy);sine the quantity under the integrand is uniformly lose to f(y) = P(y+Gy � a2)with respet to y 2 [0; a1℄, one has to verify that jEx (f(p�V �1 )) � Ex (f(V 1))j isuniformly small, but this is preisely a onsequene of what has just been proved.The proof for an arbitrary n is done by indution. This ompletes the proof. �Corollary 4. If lim�!0p�V �0 = v; then, as � tends to 0, the Markov hain(p�V �n ) onverges in distribution to the Markov hain (V n) (See De�nition 2).Proof. Sine one has to prove the onvergene of the �nite dimensional distribu-tions, the orollary is a diret onsequene of Proposition 3 and Relation (5). �Proposition 5. If lim�!0p�W�0 = w; then the Markov proess(W�(t)) = �p�W�bt=p��onverges in distribution to the Markov proess �W (t)� on [0; wmax℄ suh thatW (0) = w and with the in�nitesimal generator given by(12) 
(f)(x) = f 0(x)1fx<wmaxg + Z x0 h(u) du �f(Æx)� f(x)� ;for any C1 funtion f on R+ .The Markov proess (W�(t)) is right ontinuous with left limits everywhere.The onvergene mentioned in this proposition is the onvergene of probabilitydistributions on the spae of right ontinuous funtions on R+ with left limitsendowed with Skorohod topology. (See Billingsley [7℄ or Ethier and Kurtz [12℄ forthe de�nitions and results onerning this topology).The distributions of the variables (Gx; x � 0) have the following remarkableproperty that for x, y � 0,P(Gx � y) = P(G0 � x+ y)P(G0 � x) :(See De�nition (6).) This property an be also seen as a onsequene of the Markovproperty of the asymptoti Markov proess �W (t)� when the maximum window sizeis in�nite.
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10 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTProof. We shall assume that wmax is in�nite, the proof is analogous (even simpler)when this quantity is �nite. Basially we shall prove that the in�nitesimal genera-tors onverge to the appropriate in�nitesimal generator. If this gives an indiationof the kind of results one might expet, to prove the onvergene rigorously someuniform onvergene has to be established. We shall use the riterion given byCondition (h) of Corollary 8.9 page 233 of Ethier and Kurtz [12℄ for the Markovproesses obtained from Markov hains.We denote and by C the set of C2-funtions f on R+ suh that the onvergenelimx!+1(1 +H(x)2) supu�x�1 jg(u)j = 0;(H is de�ned in Proposition 1), is true for g = f 0, f 00 and g(x) = f(Æx); C is analgebra that strongly separates the points, i.e. if x 2 R+ and Æ > 0 then thereexists f 2 C suh that inf(jf(y)� f(x)j : jy � xj � Æ) > 0:Condition (h) of Ethier and Kurtz is applied by taking (in the notations of thisorollary) Gn = R+ , so that Equation (8.47) is automatially satis�ed.If P� is the transition matrix of the Markov hain (p�W�n ) andA� = (P� � I)=p�;where I is the identity; if we prove that for any f 2 C,(13) lim�!0 kA�(f)�
(f)k1 = lim�!0 supx�0 jA�(f)(x)�
(f)(x)j = 0;then Equation (8.48) of Condition (h) of Ethier and Kurtz is established, hene theCorollary 8.9 an be applied and the onvergene is then proved.For x � 0 and f 2 C,A�(f)(x) = 1p� (f(x+p�)� f(x))P (G�x � 1)+ �f �p�bÆx=p��� f(x)� 1� P (G�x � 1)p� :For x � 0 the di�erene jA�(f)(x) � 
(f)(x)j an be bounded by the quantity�1(x) + �2(x), with�1(x) = ���� 1p� (f(x+p�)� f(x)) � f 0(x)����+ jf 0(x)j ����1� exp��p� Z x0 h(bu=p�p�) du�����and�2(x) = ���f �p�bÆx=p��� f(Æx)��� Z x0 h(u) du+ (jf(Æx)j+ jf(x)j) ��������1� exp��p� Z x0 h(bu=p�p�)� dup� � Z x0 h(u) du�������� :
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 11Taylor's formulas for f and x! exp(�x), the fat that f is in C and straightforwardalulations give the desired uniform onvergene (13). The proposition is proved.�The limiting Markov proess grows deterministially at rate 1 and jumps fromx to Æx with intensity R x0 h(u) du. It is easy to hek that, starting from x > 0, theduration of time to jump downwards has the same distribution as Gx.3. Convergene of the invariant measuresWe are now interested by the equilibrium behavior of the AIMD algorithm. Upto now, a losed form expression for the invariant probabilities of the Markov hains(W�n ) and (V �n ) is not known, see Dumas et al. [9℄ for stohasti bounds in somespeial ases. The main results of this part onern the onvergene in distributionof these invariant probability measures when � tends to 0. As we shall see inSetion 4, the limiting probabilities have an expliit expression in some ases ofpratial interest. For the moment we study the behavior of the embedded Markovhain (V �n ).De�nition 6. If K � 0, T�K [resp. TK℄ is the hitting time of the interval [0;K℄ bythe Markov hain (p�V �n ) [resp. (V n)℄,T�K = inf �n � 1 : p�V �n � K	 and TK = inf �n � 1 : V n � K	 :Proposition 7. For � > 0, the Markov hain (V �n ) is ergodi. When w�max = +1,there exist K, � and � > 0 suh that for 0 < � < 1,(14) E �e�T�K��p�V �0 ���p�V �0 > K� � 1:Proof. The proof uses a Foster-like riterion to give an estimate of the exponentialmoment of T�K (see Meyn and Tweedie [18℄). For n 2 N, Fn denotes the �-�eldgenerated by the random variables V �0 ,. . .V �n�1, V �n .The Markov hain (V �n ) is learly irreduible and aperiodi on N � f0g. For� > 0 and n 2 N, de�ne Zn = exp(�p�V �n ). For K > 0, the inequalityE(Zn+1 � ZnjFn) � ZnE �e�(Æ�1)K+�Æp�G�V �n � 1� ;holds on the Fn-measurable event En def= fp�V �n > Kg, therefore if � < 1,E(Zn+1 � ZnjFn) � Zn0�e�(Æ�1)K sup0<�<1y�0 E �e�G�by=p��� 11Aholds on En. Aording to Proposition 1, we an �x � < �0 so that there exists aonstant C satisfyingE(Zn+1 � ZnjFn) � Zn �Ce�(Æ�1)K � 1� ;on En for all � 2℄0; 1[. Consequently, there exist some K0 > 0 and � < 1 suh that(15) E(Zn+1 jFn) � �Zn; on the event fp�V �n > Kg;for K � K0. The inequality (15) implies that if p�V �0 > K, the sequene(Un) = ���n^T�KZn^T�K�
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12 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTis a super-martingale with respet to (Fn) (sine the relation T�K > n implies thatthe inequality p�V �i > K holds for i � n). Hene for n � 0,E ���n^T�K ���F0� � E ���n^T�KZn^T�K ���F0� = E(Un jF0) � U0 = e�p�V �0 :By letting n go to in�nity we get the inequalityE ���T�K ���F0� � e�p�V �0on the event fp�V �0 > Kg. The proposition is proved. �Proposition 8. The ontinuous state spae Markov hain (V n) is Harris ergodi.If V1 is some random variable distributed as the invariant probability of (V n), itsatis�es the following identity(16) V1 dist.= Æmin�V1 +GV1 ; wmax�where (Gx; x � 0) are random variables independent of V1 whose distributions aregiven by the relation (6).For the general de�nitions and results onerning Markov proesses with a on-tinuous state spae, see Nummelin [19℄.Proof. Sine the transition of the Markov hain has a ontinuous density, it is aHarris hain (See Durrett [10℄ page 326). It is easily seen that for any x � 0,then P(G0 � y) � P(Gx � y) for y � 0; Gx is stohastially bounded by G0.Thus we an onstrut a sequene (Zn) and an i.i.d sequene (G0;n) with the samedistribution as G0 suh that Z0 = V 0,Zn+1 = Æ(Zn +G0;n) and V n � Zn;for all n 2 N. The sequene (Zn) is an AR proess (Autoregressive) whih isHarris ergodi (see Durrett [ibid℄). Thus we get that the sequene of probabilitydistributions  1n nXk=1P �V k 2 � �!is tight; learly any limit of this sequene is an invariant probability distributionfor the Markov hain (V n). To onlude, an Harris Markov hain with an invari-ant probability distribution is neessarily ergodi. (See Durrett [10℄ Exerise 6.11page 330.)Aording to De�nition (10) of the transitions of the Markov hain (V n), itsinvariant distribution satis�es the relation (16). �Theorem 9. When � tends to 0 the invariant distribution of the Markov hain(p�V �n ) onverges to the invariant distribution of the Markov hain (V n). Conse-quently, the following diagram ommutes,(p�V �n ) n!+1�����! p�V �1�!0 ??y ??y�V n� ����! V1:
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 13Proof. We denote by �� the invariant probability of (p�V �n ) and (Z�n ) is the se-quene of the suessive elements of [0;K℄ visited by this Markov hain. In the restof the proof, for variables with index �, the notation E� (�) and P�(�) refer to theMarkov hain (p�V �n ) when the distribution of p�V �0 is �.Notie that if p�V �0 � K, then Z�0 = p�V �0 and Z�1 = p�V �T�K . With the sameargument as in the proof of Proposition 8 it easily seen that (Z�n ) is a Harris ergodiMarkov hain; ��K denotes its invariant probability, in partiular ��K [0;K℄ = 1. Theprobability �� an be represented as(17) E�� (f) def= ZR+ f d�� = 1E��K (T�K)E��K 0�T�K�1Xk=0 f �p�V �k �1A ;for any bounded measurable funtion f on R+ (see Asmussen [5℄ for example). Forthe asymptoti Markov hain, with the orresponding notations (� is the invariantprobability of (V n)), the following identity holds,(18) E� (f) = 1E�K �TK�E�K 0�TK�1Xk=0 f(V k)1A ;where �K is the invariant probability of (Zn) whih is the embedded Markov hainof the visits of (V n) in the set K.The proof of the Theorem onsists in showing that, for someK > 0, the left handside of (17) onverges to the left hand side of (18) when � tends to 0. To prove thisonvergene, the inequality (14) is used to trunate the sum under the expetationand the remaining terms are shown to onverge with the help of relation (11).The set of probability measures f��K ; � > 0g is obviously tight. Consequently,there exists a probability �K on [0;K℄ and a sequene (�n) onverging to 0 suhthat (��nK ) onverges to �K .The probability �K is invariant for �Zn�.For n 2 N and a, x � K,P(T�K = n;Z�1 � a) = P �V �1 > K; : : : ; V �n�1 > K;V �n � a�Aording to Proposition 3, when � goes to 0 this last quantity is onverging toP �V 1 > K; : : : ; V n�1 > K;V n � a� = P(TK = n;Z1 � a)uniformly on p�V �0 2 [0;K℄. In partiular the variables (T�nK ) [resp. (Z�n1 )℄onverge in distribution to the variable TK [resp. Z1℄. By invariane, for � > 0,��nK ([a;+1[) = P��nK (Z�n0 � a) = P��nK (Z�n1 � a);the uniform onvergene gives the identity�K([a;+1[) = limn!+1P��nK (Z�n1 � a) = P�K (Z1 � a)The probability �K is therefore an invariant probability measure for the Markovhain �Zn�; by uniqueness this implies that �K = �K . Thus, we have shown thatthe probabilities (��K ;� > 0) onverge to �K as � tends to 0.Proposition 7 shows that there exist onstants K, �, � > 0 suh thatE �e�T�K��p�V �0 ���p�V �0 � K� � 1:
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14 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTThe Markov property gives the relatione��E��K �e�T�K� � 1 + E��K �e�p�V �1 Ep�V �1 �e�T�K��p�V �1 ���p�V �1 > K��� 1 + E��K �e�p�V �1 � � 1 + E��K �e�Æp�V �0 +Æ�p�G�V �0 �sine p�V �0 � K for the probability measure P��K ,e��E��K �e�T�K� � 1 + e�ÆKE��K �e�p�G�V�0 � ;and this quantity is bounded for 0 < � < 1, aording to the inequality (8) (byhoosing � suÆiently small). With the initial distributions (��K), the variables(T�K ;� < 1) are therefore uniformly integrable, in partiularlim�!0 E��K (T�K) = E�K (TK);and for " > 0 there exists C > 0 suh thatE�K �TK1fTK�Cg� � " and E��K �T�K1fT�K�Cg� � ";for 0 < � < 1. From these estimates and the uniform onvergene of Proposition 3,for a bounded measurable funtion f , we dedue thatlim�!0 E��K 0�T�K�1Xk=0 f(V �k )1A = E�K 0�TK�1Xk=0 f(V k)1A ;as � goes to 0, hene aording to the identities (17) and (18), the probabilities(��;� > 0) onverge to � as � tends to 0. The theorem is proved. �Theorem 10. When � tends to 0 the invariant distribution of the Markov hain(p�W�n ) onverges to the invariant distribution of the Markov proess (W (t)),�p�W�bt=p�� t!+1����! p�W�1�!0??y ??y�W (t)� ����! W (1):Proof. The proof is similar to the proof of Theorem 9. Basially the sums in (17)and (18) have to be replaed by integrals. �4. The representation of the limiting invariant measuresIn this setion we shall onsider the ase when h � 1; the loss probability is aonstant for all pakets. In this ase, for x � 0, the distribution of Gx is given by(19) P(Gx � y) = e�xy�y2=2;for y � 0. The in�nitesimal generator 
 given by (12) of the asymptoti Markovproess is given by(20) 
(f)(x) = f 0(x)1fx<wmaxg + x(f(Æx) � f(x)):The following simple proposition is ruial to get the stationary behavior of AIMDalgorithms analyzed in this setion.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 15Proposition 11. For x > 0, if the distribution of a random variable Gx is givenby (19), the following identity holds(21) �x+Gx�2 dist.= 2E1 + x2;where E1 an exponentially distributed random variable with parameter 1.Proof. For y � 0, the relation (19) givesP((x+Gx)2 � y + x2) = e�y=2;and the result follows. �We �rst study the ase of the in�nite maximum window size. The harateristisof the system at equilibrium (invariant probability, throughput) have rather simplelosed form expressions. The orresponding expressions for the �nite maximumwindow size ase are still expliit but more intriate.4.1. In�nite maximum window size.The embedded Markov hain. The following proposition gives a probabilisti repre-sentation of V1 when the maximum window size is in�nite. Its analyti ounterpartis Proposition 13 below. It shows that the square of the limiting embedded Markovhain is an AR proess. To our knowledge, this ruial property does not seemto have been remarked previously. The AR property is the key harateristi ofthe AIMD ontrol sheme. As we shall see later the AR property has importantonsequenes on the qualitative behavior of TCP. In partiular it implies that thetail distribution of the size of the ongestion window deays as exp(��x2). Thisindiates that the probability of having large windows is rapidly dereasing andthat the steady state probability distribution is onentrated on relatively smallvalues of the ongestion window size.Proposition 12. When the maximum window size is in�nite, wmax = +1, thesquare of the Markov hain (V n) is an AR proess with the following representation:for n 2 N, V 2n+1 = Æ �V 2n + 2En�where (En) is an i.i.d. sequene of exponentially distributed random variables withparameter 1.Its invariant probability an represented by the random variable V1 satisfyingrelation (16)(22) V1 dist.= vuut2 +1Xn=1 Æ2nEn:Proof. From relation (10) we getV n+1 dist.= Æ �V n +GV n� ;where the variables (Gg ; x > 0) are independent of V n. Therefore Proposition 11gives the identity V 2n+1 dist.= Æ2 �V 2n + 2En� ;
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16 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTwhere En is an exponential variable with parameter 1. The AR property is proved.At equilibrium, using relation(16), the orresponding equation isV 21 dist.= Æ2 �V 21 + 2E1� :If this relation is iterated, one gets identity (22) (the residual term Æ2nV 21 onvergesin distribution to 0). �From the above proposition one an derive the density of the limiting randomvariable V1.Proposition 13. The density funtion of V1 when the maximum window size isin�nite is given by, for x � 0,(23) hÆ(x) = 1Q+1n=1(1� Æ2n) +1Xn=1 1Qn�1k=1 (1� Æ�2k)Æ�2nxe�Æ�2nx2=2:Proof. Let eV1 denote the Laplae transform of the random variable V 21=2, whihis de�ned for � 2 C with <(�) � 0 byeV1(�) = E �e��V 21=2� :A diret onsequene of the independene of the exponential random variables (En)in equation (22) is that eV1(�) = 1Yk=1 1(1 + Æ2k�) :The Laplae transform eV1 has simple poles loated at the points f�1=Æ2n; n � 1g.For n � 1, the residue of eV1 at �1=Æ2n is given by1Æ2n n�1Yk=1 1(1� Æ2k=Æ2n) 1Yk=n+1 1(1� Æ2k=Æ2n) = Æ�2nQn�1k=1 (1� Æ�2k) 1Q1k=1(1� Æ2k) :It follows thateV1(�) = 1Q1k=1(1� Æ2k) +1Xn=1 1Qn�1k=1 (1� Æ�2k) Æ�2n� + Æ�2n ;hene the density of V 21=2 is given by, for x � 0,1Q1k=1(1� Æ2k) +1Xn=1 1Qn�1k=1 (1� Æ�2k)Æ�2ne�Æ�2nx:This ompletes the proof of the proposition. �As shown by the piture below the distribution of V1 is sharply onentratednear the origin. Its tail distribution is equivalent to Cx exp(�Æ2x2=2) as x getslarge.
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0.5 1 1.5 2 2.5Figure 2. The density of V1 for Æ = 1=2The throughput.De�nition 14. For � > 0, the throughput of the algorithm is de�ned as the limit��(Æ) = limn!+1 1n nXi=1W�k :This de�nition assumes that the round trip time (RTT) is taken equal to 1. Thus,up to this fator, this is the de�nition of the literature. The ergodi theorem forthe Markov hain (W�n ) gives that ��(Æ) = E(W�1 ). Using the embedded Markovhain (V �n ) it is easily seen that the throughput an also be written as��(Æ) = limn!+1 1Pn1 G�V �i nXi=1 G�V�i �1Xk=0 (Vi + k):From the ergodi theorem applied to the Markov hain (V �n ), we get �nally(24) ��(Æ) = E �PG�V�1�1k=0 (V �1 + k)�E �G�V �1� = E �2G�V �1V �1 + �G�V �1�2�2E �G�V �1� � 1=2:Proposition 15. The asymptoti throughput of an AIMD algorithm with multi-pliative derease fator Æ is given by(25) �(Æ) def= lim�!0p���(Æ) = Æ(1� Æ)E �V1� =r 2� Q+1n=1 �1� Æ2n�Q+1n=0 (1� Æ2n+1) :Proof. By de�nition of the throughput, we have��(Æ) = �1=2+ E ��V �1 +G�V �1�2 � (V �1)2�� 2E �G�V �1� :
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18 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTIdentity (16) shows that��(Æ) = �1=2+ E �(V �1)2(1=Æ2 � 1)�Æ 2E �G�V �1�= (1 + Æ)E((V �1 )2)2Æ(1� Æ)E(V �1 ) � 1=2:Aording to Theorem 9, the following onvergene holdslim�!0p���(Æ) = (1 + Æ)E �V 21�2Æ(1� Æ)E(V 1) = Æ(1� Æ)E(V 1) ;where the last relation is a onsequene of representation (22). The quantity E(V 1)is obtained with expression (23) of the density hÆ. The relationZ +10 Æ�2nx2 exp(�Æ�2nx2=2) dx =r�2 Æn;for n � 1 and Euler's identity (see Erdelyi [11℄ formula (25) page 261),(26) +1Xn=0 xn(n+1)=2tnQnl=1(1� xl) = +1Yl=1 �1 + txl�applied for x = Æ2 and t = �Æ give the �nal formula for the throughput. �Note that Ott et al. [20℄ obtained expressions similar to (23) and (25) for aontinuous system, desribed as the solution of a deterministi di�erential equationperturbated at the points of a Poisson proess. For the �nite time behavior, thissystem an be onsidered as a limit of the original model. If we observe the systemat the level of the pakets instead of the suessive ongestion windows, the pointsof the Poisson proess are the instants, properly renormalized, when pakets arelost. At equilibrium there is no onvergene result for the invariant distributionssupporting the fat that this system may be seen as a limit of the original model.Tehnially, the trouble omes from the deterministi di�erential equationx0(t) = a=x(t)onsidered in that paper. It has a singularity when x(0) is lose to 0. In �nitetime, this singularity an be ontrolled; for the equilibrium, i.e. at t = +1, it isless lear how one an prove that the invariant probability distributions onvergeto the invariant probability measure of the perturbated di�erential equation.Remarks.a) For the ase of TCP, Æ = 1=2, the throughput is � 1:3098 whih is the valueobserved in earlier simulations and experiments (see Floyd [13℄, Floyd et al. [14℄and Madhavi and Floyd [17℄).b) Trite manipulations with the expression (25) of �(Æ) show that�(Æ) �s 2�(1� Æ)when Æ % 1. This does not mean that, in pratie, the throughput really inreaseswith Æ. Indeed, the loss proess is in fat also related to Æ. The model we onsiderdoes not take into aount this relation.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 19The ontinuous time proess. The above results on the invariant distribution ofthe embedded Markov hain give the expression of the density of the invariantdistribution of the ontinuous time proess (W (t)).Proposition 16. When the maximum window size is in�nite, the resaled asymp-toti density funtion of the ongestion window size at equilibrium W1 is given by,for x � 0,(27) HÆ(x) = p2=�Q+1n=0(1� Æ2n+1) +1Xn=0 Æ�2nQnk=1(1� Æ�2k)e�Æ�2nx2=2:Proof. The lassial representation of the invariant measure of the ontinuous timeproess (W (t)) with the invariant probability of (V n) is given by(28) E �f �W1�� = 1E �GV1�E  Z GV10 f �V1 + s� ds! ;for any non negative measurable funtion f on R+ . The invariane relation (16)(with wmax = +1) gives the identityE �GV1� = 1� ÆÆ E �V1� ;the right hand side is preisely the inverse of the asymptoti throughput aordingrelation (25). If we take f(x) = exp(��x) for x in identity (28) and � � 0, theLaplae transform of W1 is given byE �exp ���W1�� = �(Æ) E  Z GV10 exp ��� �V1 + s�� ds!= �(Æ)� �E �exp(��V1�� exp ��� �V1 +GV1��� :Relation (16) shows that this last expression isE �exp ���W1�� = �(Æ)� �E �exp(��V1��� E �exp ���V1=Æ��= �(Æ) E  Z V1=ÆV1 e��s ds!= Z +10 e��sP �V1 � s � V1=Æ� ds:From Relation (28) we get that the density of W1 is given byHÆ(x) = �(Æ)P �V1 � x � V1=Æ� = �(Æ)P �Æx � V1 � x� ;for x � 0. The expression (23) of the density of V1 is used to onlude theproof. �4.2. Finite maximum window size.
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20 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTThe embedded Markov hain. In this setion, we assume that the resaled maximumwindow size wmax is �nite. As we shall see, by using equation (16), it is alsopossible to expliitly ompute the distribution of the limiting random variable V1.The following proposition is the analogue of Proposition 12, it gives an expliitprobabilisti representation of V1.Proposition 17. If (Ei) is an i.i.d. sequene of exponential random variables withparameter 1, the invariant probability measure of the limiting Markov hain an berepresented as follows,(29) V1 dist.= vuut infn�0 Æ2nwmax + 2 nXi=1 Æ2iEi!;where (En) is an i.i.d. sequene of exponentially distributed random variables withparameter 1.Proof. From the identity (21) and Equation (16), we get that(30) V 21 dist.= Æ2min �w 2max; 2E1 + V 21� ;where E1 is an exponential random variable with unit mean, independent of V1.If we iterate this equation, by indution we obtain that for N � 1,V 21 dist.= min0�n�N�1 Æ2nw 2max + 2 nXi=1 Æ2iEi! ^ Æ2NV 21 + 2 NXi=1 Æ2iEi! :The proposition follows by letting N go to in�nity. �Notie that when wmax goes to in�nity, the representation (29) onverges tothe expression (22) obtained for the in�nite window size. We now give the expliitrepresentation of the distribution of V1. The equation (30) shows that this variablehas a mass at Æwmax. As we shall see in the next proposition, the distribution ofV1 is a onvex ombination of a Dira mass at Æwmax and a density funtion on[0; Æwmax℄.Proposition 18. The distribution of V1 has a mass � at Æwmax, with(31) 1=� = 1 + +1Yn=1(1� Æ2n) +1Xn=0 1Qnk=1(1� Æ2k) �eÆ2nw2max=2 � eÆ2(n+1)w2max=2�!and a density funtion ~hÆ on [0; Æwmax℄ given by(32) ~hÆ(x) = hÆ(x) + x� +1Xn=1�kn �x2 � Æ2(n+1)w2max�� kn �x2 � Æ2nw2max�� ;where hÆ is the density funtion given by (23) and for, n � 1, kn(2x) is the densityof Æ2E1 + � � � + Æ2nEn when the random variables (Ei) are i.i.d. exponentiallydistributed with parameter 1.The funtion kn an be expressed expliitly as a linear ombination of the fun-tions exp(�Æ�2kx), x � 0, k = 1; : : : ; n. (Notie that kn vanishes on R� ).With the expressions (31) and (32), it is easily seen that the distribution of V1onverges to the distribution with density hÆ when wmax tends to in�nity.
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 21Proof. If we set Z = V 21=2, � = Æ2 and w = � w2max=2, the relation (30) showsthat the variable Z satis�es the following relationZ dist.= min(�(Z +E); w);where E is an exponential variable with parameter 1 independent of Z. If � denotesthe Laplae transform of Z, the above equation an be written as, for � � 0,�(�) = E �e��Z� = E �e���(Z+E)1f�(Z+E)<wg�+ e��wP (�(Z +E) � w):By using the fat that E and Z are independent, we get�(�) = E  e���Z �1� e�(��+1)(w=��Z)�1 + �� !+ e��wE �e�(w=��Z)� ;(33)therefore,�(�) = 11 + �� �(��) + ��1 + �� e�(�+1=�)w�(�1);(34)if the above relation is used reursively, we obtain for n � 1,�(�) = 1Qnk=1(1 + ��k)�(��n) + �(�1)e�w=� n�1Xk=0 ��k+1Qk+1i=1 (1 + ��i)e���kw;sine �(��n)! 1 as n goes to in�nity (reall that � < 1), the Laplae transform �an be expressed as�(�) = 1Q+1k=1(1 + ��k) + �(�1)e�w=� +1Xk=0 ��k+1Qk+1i=1 (1 + ��i)e���kw:If we take � = �1 in this identity we get that1=�(�1) = 0�1 + e�w=�Xn�0 �n+1Qn+1k=1(1� �k)e�nw1A +1Yn=1(1� �n):If we set � = �(�1)e�w=�, then learly� = P(�(Z +E) > w) = P(V1 +GV1 > wmax) = P(V1 = Æwmax);aording to relation (30). It is then easily seen that � an be written as�(�) = 1Q+1k=1(1 + ��k) + � e��w + +1Xn=1 1Qni=1(1 + ��i) �e���nw � e���n�1w�! :The above Laplae transform is then easy to invert and yields the identity (32). �The throughput. With the same argument leading to the relation (24) for the in�nitemaximum window size, the throughput ��(Æ) (De�nition 14) an be expressed as��(Æ)E(�� ) = E  ���1Xk=0 W�k ! ;where �� is the �rst time there is a loss when the initial window size is V �1. Notiethat �� is G�V �1 only if a loss ours before (W�n ) hits the level w�max. When the
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22 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTmaximum window size is reahed, the window size remains onstant for a geometri-ally distributed period H� with parameter exp(��w�max). This gives the followingidentities �� = G�V �11nV �1+G�V �1<w�maxo + (w�max � V �1 +H�) 1nV �1+G�V �1�w�maxo;(35) ���1Xk=0 W�k = V �1+G�V�1Xk=V �1 k +0�w�maxH� � V �1+G�V�1Xk=w�max k1A 1nV �1+G�V �1�w�maxo:(36)If �� is the probability of this event (by invariane �� = P(V �1 = Æw�max)), we get�E  ���1Xk=0 W�k ! = 12E ��p�V �1 +p�G�V �1�2�� 12E �(p�V �1)2�+ o(p�)+ ��p�w�maxE �p�H��� ��2 �E �p�w�max +p�G�w�max�2 � �p�w�max�2� ;this identity is a onsequene of the Markov property of (W�n ). The variable V �1 +G�V �1 onditionally on the eventnV �1 +G�V �1 � w�maxohas the same distribution as w�max +G�w�max . The saling relation (4) for w�max im-plies that p�H� onverges in distribution to an exponentially distributed randomvariable with mean 1=wmax, using Theorem 9, we obtain(37) lim�!0�E  ���1Xk=0 W�k ! = 12 �E �V1 +GV1�2 � E �V1�2�+ � � �2 �E �wmax +Gwmax�2 � w 2max� = 1;by Proposition 11. Similarly for ��,�� = (w�max � V �1) ^G�V �1 +H�1nV �1+G�V �1�w�maxotherefore E (��) = E �w�max ^ �V �1 +G�V �1�� V �1�+ ��E (H�)= 1� ÆÆ E(V �1 ) + ��E (H�)by the invariane relation (16) for V �1.The following proposition is therefore a onsequene of the last identity andrelation (37).Proposition 19. If ��(Æ) is the throughput of an AIMD algorithm with multiplia-tive derease fator Æ and maximum window size w�max, then(38) lim�!0p���(Æ) = Æ(1� Æ)E(V 1) + Æ�=wmax ;the onstant � and the distribution of V1 are given by Proposition 18.The above formulas have been used in Figure 3 and 4 to represent the dependeneof the throughput and � with respet to the maximum ongestion window size.



www.manaraa.com

A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 23

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4wmax
5

3/20
1/2
7/8

Figure 3. The throughput for Æ = 3=20, 1=2 and 7=8
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Figure 4. The stationary probability of hitting the maximumwindow size before a loss5. The distribution of the hitting timesIn this setion we study the hitting time of some level by the size of the onges-tion window. Its pratial importane is fairly lear sine the performane of thetransmission is optimal when the maximal ongestion window is reahed.
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24 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTDe�nition 20. If x > 0, S�x is the �rst time (W�n ) reahes the level x=p�,S�x = inf �n � 1 :W�n � x=p�	 and Sx = inf �t > 0 :W (t) � x	The onvergene result of Proposition 5 gives the key to the limiting behaviorof S�x , it suggests that S�x is of order 1=p�. The next result show that this isindeed the ase. Moreover, the limiting distribution is expressed with the help ofan eigenvetor of the in�nitesimal generator 
 de�ned by (12). These results arean illustration of the interest of the funtional limit theorems proved in Setion 2.Theorem 21. If lim�!0p�W�0 = x0 < W (0) = x, the variable p�S�x onvergesin distribution to Sx as � tends to 0. Its Laplae transform given by, for � � 0,E �e��Sx� = f�(x0)f�(x) ;where f� is the unique solution of the equation(39) f 0(y) + yf(Æy) = (� + y)f(y);with f(0) = 1.Proof. For a � 0, by de�nition�p�S�x > a	 = � sup0�t�ap�W�bt=p� < x� ;sine the funtion g ! supfg(u); 0 � u � ag is ontinuous on the Skorohod spaeof funtions on R+ (see Ethier and Kurtz [12℄), Proposition 5 shows thatlim�!0P �p�S�x > a� = P� sup0�t�aW (t) < x� = P �Sx > a�the variable p�S�x onverges in distribution to Sx as � tends to 0.We now prove that equation (39) has a unique solution. If f is suh a solution,taking g(y) = exp(�(� + y)2=2)f(y), we get the di�erential equation,g0(y) = �ye�(1�Æ)y(�+(1+Æ)y)=2g(Æy);hene(40) g(y) = e��2=2 � Z y0 ue�(1�Æ)u(�+(1+Æ)u)=2g(Æu) du:Sine Æ < 1, the above equation an be seen as a �xed point equation on the spaeC([0; 1=2℄) of the ontinuous funtion on [0; 1=2℄. If  (g) denotes the right handside of (40), it is lear that  is a ontrating funtional on C([0; 1=2℄) endowedwith the uniform norm. The operator  has therefore a unique �xed point onC([0; 1=2℄). If g is this �xed point, then g an be ontinued on the real line. Fory 2 R+ , aording to (40), the value of g(y) is expressed with the values of g onthe interval [0; Æy℄. The existene and uniqueness of equation (39) are proved.Using expression (20) of the in�nitesimal generator 
, equation (39) an alsobe written as 
(f)(x) = �f(x) for x � 0. (Here wmax does not play a role, itis assumed to be in�nite). Using a lassial result on the martingales of Markovproesses (see Rogers and Williams [23℄ for example), we get that�e�� t^Sxf �W (t ^ Sx)��
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A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 25is a loal martingale. Sine f is ontinuous on [0; x℄, this loal martingale is boundedhene a regular martingale, thereforef(x0) = E �e�� Sxf �W (Sx)�� = f(x)E �e�� Sx� :The theorem is proved. �We have not been able to �nd a losed form expression for the solution of equa-tion (39). Nevertheless it is possible to get some expliit results on the distributionof the hitting times (Sx). If f is the solution of the following equation, for x > 0,
(f)(x) = 1;with f(0) = 0, when W (0) = x0 < x the same arguments as in the proof of theprevious theorem show that E(Sx) = f(x) � f(x0). The funtional equation tosolve is f 0(x) + x(f(Æx) � f(x)) = 1;for x � 0, with f(0) = 0. If g(x) = exp(�x2=2)f(x), then this equation beomes(41) g(x)� Z x0 e�u2=2 du =  (g)(x) def= � Z x0 ue�(1�Æ2)u2=2g(Æu) du;for x � 0. As before this �xed point equation has a unique solution whih an beobtained by iteration. If this equation has some similarity with identity (40), itssolution an be represented expliitly with the following trik. For a, b 2 R+ , wedenote by H [a; b℄ the funtionH [a; b℄(x) = e�ax2=2 Z x0 e�bu2=2 du;for x � 0; the operator  applied to H [a; b℄ gives the relation(42)  (H [a; b℄) = Æa+ 1� Æ2 �H �a+ Æ2b+ 1� Æ2; Æ2b��H �0; a+ Æ2b+ 1� Æ2�� :De�nition 22. The ountable subset T of R2+ and the funtion L : T ! R+ arede�ned as follows:| (0; 1) 2 T and L((0; 1)) = (1� Æ2)=(1 + Æ � Æ2);| if z = (a; b) 2 T then the elements e0(z) = (a + Æ2b + 1 � Æ2; Æ2b) ande1(z) = (0; a+ Æ2b+ 1� Æ2) are also in T withL(ei(z)) = (�1)iÆa+ 1� Æ2L(z);for i = 0 and for i = 1 if z 6= (0; 1).In this manner T has a binary natural tree struture with (0; 1) as the anestor,the hildren of z 2 T are e0(z) and e1(z). Notie that the funtion z ! e0(z) has no�xed point and (0; 1) is the only one for z ! e1(z) If we ombine the representationof the solution of the equation (41) by iteration together with the identity (42), weobtain the following proposition.
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26 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERTProposition 23. If W (0) = x0 < x then E(Sx) = f(x)� f(x0) with(43) f(x) = ex2=2Xz2T L(z)h[z℄(x);where h[z℄(x) = e�ax2 Z x0 e�bu2 du;if z = (a; b) and the set T and the funtion L(�) are given by de�nition 22.We �nish by an estimation of the mean value of Sx, it an be re�ned with anarbitrary preision by using the above proposition.Corollary 24. With the notation of the above proposition, if W (0) = 0, the in-equality m(x) � E �Sx� �M(x) holds, withm(x) = ex2=21� Æ2 �(1� Æ � Æ2) Z x0 e�u2=2 du+ Æ Z x0 e�Æ2u2=2 du� ;M(x) = ex2=2 Z x0 e�u2=2 du:Proof. Sine the solution of the �xed point equation (41) is learly non negative,the relation g(x) � Z x0 e�u2=2 du;holds, therefore the upper bound is true. This inequality applied in the right handside of (41) gives the lower bound. �The set T is apparently not easy to desribe expliitly (if we forget the treestruture).
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