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ABSTRACT. The Additive-Increase Multiplicative-Decrease (ATMD) schemes
designed to control congestion in communication networks are investigated
from a probabilistic point of view. Functional limit theorems for a general
class of Markov processes that describe these algorithms are obtained. The
asymptotic behavior of the corresponding invariant measures is described in
terms of the limiting Markov processes. For some special important cases,
including TCP congestion avoidance, an important AR (Autoregressive) prop-
erty is proved. As a consequence, the explicit expression of the related invari-
ant probabilities is derived. The transient behavior of these algorithms is also

analyzed.
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1. INTRODUCTION

This paper investigates the mathematical structure underlying the so-called ad-
ditive -increase multiplicative-decrease (AIMD) window based flow control schemes
used in data transmission. With the emergence of TCP (Transmission Control
Protocol) as the ubiquitous data transfer protocol, the study of these algorithms
is crucial to understand the complex behavior of modern communication networks.
Keeping in mind that TCP is one of the AIMD algorithms, using the language of
communication networks, these algorithms can be described as follows. When a
packet is sent, it is acknowledged by the destination when received. To control the
reception of packets by the destination, there is a packet loss detection mechanism
used in the AIMD scheme. This mechanism is able to detect lightweight loss (the
loss of a single packet from time to time) as well as heavy loss (for instance in the
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case of severe congestion in the network). In the case of TCP, lightweight loss is
detected through duplicated acknowledgements while heavy loss detection is per-
formed through a time-out mechanism. In the following, we consider the case of
lightweight loss only.

To simplify the description, we shall assume that the round trip time (RTT)
between the source and the destination is constant. The source maintains a variable
W referred to as the congestion window size which controls the transmission of
packets over an RTT interval. When W packets are sent to the destination during
an RTT interval, the source detects if one of them has been lost. If there is a
loss, the variable W is changed to [0W | for the next RTT interval, 6 €]0,1] is the
multiplicative constant which decrements the window size; in this case the number
of packets sent during the next cycle is drastically reduced. If all the packets are
successfully transmitted, W is just incremented by some value g > 0 if it does not
exceed some maximal value wmax, the maximal congestion window size. This is of
course a simplification of the real algorithms involved, but the basic mechanism of
reducing the congestion (called congestion avoidance) is captured by this model.
See Jacobson [15], Allman et al. [2] and Stevens [24] for more details.

Roughly speaking, the motivation of this algorithm can be described as follows:
the loss of packets in the network is mainly due to buffer overflow in the nodes of the
network. If the congestion window of many sources in the network is large, these
sources will send many packets at approximately the same time and, very likely,
they will create more and more overflow and thus more and more retransmissions, if
their respective window sizes are not reduced very quickly. Multiplicative decrease
is a way of rapidly cooling down congestion. The additive increase can be seen as
a very progressive test of the congestion of the network.

A Markovian representation. The model considered in the paper describes the
exchange of packets between the source and the destination. Each packet has some
probability of being lost and the probability that packets are lost are independent.
(In section 2 we consider a more general loss model.) The influence of the net-
work is described through this loss process. With this assumption, the sizes of the
congestion windows over the successive RTT intervals is a Markov chain (W,,).
The transitions of the Markov chain (W,,) are described by: if Wy =z > 1,

(1) Wy =

min (LQZ + BJ 9 wmax) Wlth probability exp(—agj)
max ([dz], 1) otherwise,

where 8 > 0, 0 < § < 1 and a > 0; |z] is the integer part of . The quantity
exp(—a) is the probability that a packet is not lost in the network and, assuming
independence of the losses, exp(—ax) is the probability that all the z packets of
the window are successfully transmitted. In this model the interaction between
the network and the data transfer is represented only through losses of packets.
The constant wpyax is the maximal congestion window size, only determined by the
destination.

When Wy is very large, the drift E(W; — Wy) of the Markov chain is equivalent
to —(1 — §)Wy; it implies that the Markov chain cannot travel very far from the
origin, in particular it is ergodic. (See the details below.) Thus, the long term
behavior of the source is mainly driven by the invariant measure (7, ) of (W,,). For
a fixed a, very little is known about this invariant probability, Dumas et al. [9]
gives stochastic bounds for (7,,) which are accurate when the loss rate is not small.

www.manaraa.com



A MARKOVIAN ANALYSIS OF ATMD ALGORITHMS 3

In practice, hopefully, the loss rate will be small in the network. This suggests
to look at the limiting behavior of this Markov chain when a tends to 0. This is
the main topic of this paper. This topic is not new and has been studied in great
details in the technical literature (see the section on related works below). The
contribution of the present paper to the modeling of TCP is in that it takes benefit
as far as possible of the Markovian structure of the congestion avoidance regime
in order to derive rigorous convergence results and to derive closed formulae for
the mean throughput of a TCP connection with or without upper bound for the
congestion window size. Moreover, still owing to the Markovian structure of the
system, it is possible to carry out a transient analysis of the congestion avoidance
regime. In particular, we compute the distribution of the duration of time necessary
to reach the maximal congestion window size (Section 5).

lyze the impact of AIMD algorithms through simulations and some approximated
models.

Padhye et al. [21] considers a detailed model of the evolution of TCP. Using
a finite Markov chain taking into account the key features of TCP (window size
reduction, time out, etc.), they express some of the stationary characteristics of the
protocol. In particular, they obtain a closed formula for the throughput of a TCP
connection, which has become central in the field of TCP modeling. While the
results obtained in [21] rely on an approximation of the different characteristics of
a finite state Markov chain (in particular its steady state distribution), we exploit
as far as possible in this paper the Markovian structure of the congestion avoidance
regime to establish rigorous convergence results when the loss probability tends
to 0. Moreover, we take into account a possible upper bound for the maximum
window size. With regard to the throughput, this does not simply translate into
a truncation of the throughput formula obtained when there is no upper bound.
In fact, the presence of the upper bound for the maximum window size affects the
whole distribution of the steady state probability distribution of the congestion
window size in an intricate way.

Via a different approach, Ott et al. [20] analyzes the evolution of the size of the
congestion window as the perturbation of a deterministic differential equation by a
Poisson process when the loss rate is small. In this setting they are able to give a
detailed description of the invariant measure when a tends to 0. Altman et al. [4]
extended some of these results to study the case of a finite maximal congestion
window. The model considered by Ott et al. [20] can be seen as an approximation
of the model considered here (when the window size is infinite) but at a different
time scale (or, more accurately, packet granularity). It is not clear for us how one
could justify the approximation of the invariant probabilities in this setting (see
Section 4).

Along the same lines of investigations, Adjih et al. [1] gives an asymptotic expres-
sion of the invariant measure of the size of the congestion window. They specifically
study a large number of TCP connections multiplexed in a single buffer and then
perform asymptotic analysis via a mean field technique. Altman et al. [3] give some
moments of the window size at equilibrium with the assumption that the evolution
of the size of the congestion window is an autoregressive process. If we indeed
prove in our paper that an autoregressive process indeed plays a role, it does not
seem to be related to the process introduced in [3] (see Propositions 12 and 13).

Related work. Floyd [13], Floyd et al. [14] and Madhavi and Floyd [17] ana-
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Baccelli and Hong [6] considers an algebraic setting describing precisely TCP when
the input is deterministic or periodic.

Finally, while most of studies (including this one) assume fixed round trip times,
the case of several TCP connections with different round trip times multiplexed
on a link has been analyzed by Brown [8] via a fluid-based model. In particular,
this analysis shows how the different connections occupy the link and the critical
impact of round trip times and the size of the buffer on the performance of the
system (e.g., the link utilization and the connection throughputs).

So far, we have discussed studies on the performance of TCP connections. But
TCP as well as any other procotol used for carrying elastic traffic poses more general
and very interesting problems with regard to fairness at the network level. Different
studies have addressed this issue in the recent past (see for instance Kelly [16],
Roberts and Massoulié [22],Vojnovié et al. [26]). The problem of fairness also
appears in the design of transmission protocols, which roughly behave as TCP
(TCP friendly protocols). See for instance Vojnovi¢ and Le Boudec [25] for a
mathematical formulation of the problem.

The results of the paper. Two Markov chains are considered in this paper (W)
describing the evolution of congestion window size over the successive RTT intervals
and (V,%) which is the embedded Markov chain of (W) observed when a packet
is lost. In a quite general framework we prove the convergence in distribution of
their invariant probability measures properly rescaled when the loss rate a goes
to 0, i.e. the following convergences in distribution lim,_,q/aWs = W and
lim,_,0v/aV2 =V (Theorem 9 and Theorem 10).

When the loss probability per packet is constant, an interesting AR (Auto-
Regressive) property of the Markov chain ((V,#)?)) holds when « is close to 0.
This result and the convergence results give the key to most of the explicit calcu-
lations of distributions: the distribution of V, (Propositions 13 and 18), of W
(Proposition 16) and the asymptotic throughput of the algorithm (Propositions 15
and 19).

This AR property does not seem to have been earlier identified in the literature.
This is a real benefit of the approach of this paper to consider the convergence of
the complete dynamics of the system rather than analyzing only the convergence of
the invariant probability distribution when a tends to 0. In some of the studies of
TCP (e.g. [3]), the AR property is assumed, not for ((V,,)?) but for (V). It turns
out that this assumption seems to lead a different constant for the throughput, 1.22
instead of the constant derived here 1.3098, already observed by Floyd et al. More
important, when the maximum congestion window is infinite, the equilibrium has
an exponential tail distribution instead of quadratic exponential in our case (i.e.
~ exp(—Cz?)), the number of large congestion windows is thus significantly smaller
for the model considered here.

To our knowledge the transient behavior of AIMD algorithms has not been in-
vestigated through analytical models. For example, the time to reach the maximal
congestion window is clearly an important characteristic. This measure illustrates
the performance of the AIMD scheme in the sense that it indicates how long it
takes, after a perturbation causing lightweight packet loss, to recover the maxi-
mal throughput obtained when the congestion window size is equal to the maximal
value. For the moment it has not received much attention in the stochastic models.
Some results in this domain are derived with our approach.
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Organization. In Section 2 we prove the main convergence results of this paper:
convergence in finite time of the Markov processes. More important, convergence
of the corresponding invariant distributions is shown in Section 3. In Section 4
the explicit expression of the corresponding invariant distributions is derived. The
formulas for the asymptotic throughput are obtained and discussed. Section 5 gives
some results concerning the transient behavior of TCP, in particular the hitting time
of the maximal congestion window size is investigated.

2. A GENERALIZED MARKOVIAN MODEL

In this section, with the terminology of communication networks, we consider
the sequence (W) describing the size of the congestion window over the successive
RTT intervals. It is assumed that the round trip time is large and the state of
the network evolves sufficiently rapidly so that the packet loss events in one RTT
interval do not depend on the contiguous RTT intervals.

Since we are interested in the asymptotic regime when the loss probability tends
to 0 and thus when packet loss rarely occurs so that it is reasonable to assume that
there is a single window reduction in an RTT, we directly consider the sequence
(W) described as a Markov chain with the following transitions: if W =n > 1,

max

@) W =min(n + 1,w,,), with probability [];_, exp(—h{),
W = max (|dn],1), otherwise .

The quantity exp(—h$) is the probability that during an RTT interval the ith

packet is not lost when ¢ — 1 packets have been successfully transmitted. We shall

assume that for ¢ € N,
(3) he = ah (iva),

where h is a non identically 0, continuous, non decreasing function on R, . In
particular, for = > 0,
ha
lim Y20 _ F(z).
a—0 (6%
The parameter « controls the loss rate of the algorithm. The original model (1)
corresponds to the case where A is constant equal to 1.

With this model, it is implicitly assumed that the probability of loss of a packet
is non decreasing with respect to its index in the current window. (As the number
of packets in the network grows, the more likely they will be lost). The constant
Weax € NU {400} is the maximal window size, it is assumed that it satisfies the

max

following scaling relation with «,

(4) lim o ws,, = Wmax-

a—0
Without loss of generality for the asymptotic results we are considering, the additive
constant § of the transitions (1) can be taken equal to 1.

The embedded Markov chain
It is natural to consider the state of the Markov chain (W2) just after a loss.
The associated process is denoted by (V,%), this is clearly a Markov chain whose
transitions are given by, if V¥ =n >1

(5) Vi* = [dmin (n + G, whay) | V1
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where £ V 1 = max(z, 1) and the random variable G¢ is defined by

n+m—1 k
PGy >m = [] T[ew-5).
k=n j=1

form > 1 and n > 1, recall that Hle exp(—hy) is the probability that a congestion
window of k packets is successfully transmitted over an RTT interval. The quantity
G?% is the number of congestion windows sent successfully when the initial window
size is n. With the above equation it is easy to check that the random variable G&
is stochastically decreasing with n because h is non decreasing. Roughly speaking
the number of successful consecutive windows is smaller when the starting point is
higher.

max |-

Voa V2a

FiGURE 1. Evolution of the congestion window size

Convergence to a Markov process in finite time. We now show that the
Markov chains described above are of the order 1/4/a when « tends to 0. The next
proposition shows that y/a is indeed the right scaling for the embedded Markov
chain.

o, . N [e3
Proposition 1. For z > 0, as a goes to 0, the random wvariable \/aGLz/\/EJ

converges in distribution to a non negative random variable G, such that for y > 0,
6) P@zy)—ew (- [ Hwan),
with H(u) = / h(v) dv, and for any K > 0,

0

7 lim su ‘IF’ G,>y)-P aG, ~ > ‘20.
@) a0 Jaonh <k (Ga 29) (\F |2/ va) y)

Moreover, there exists \g > 0 and ag > 0 such that for A < Ag,

(8) sup  sup ]E(e}“/aGclxm/ﬁJ) < +o0.
0<a<ag z>/a
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When h = 1, the distribution of the random variable G, is given by, for y > 0,
P (G, > y) = exp (—y2/2 —zy).
Proof. For z, y > v/a and « €]0, 1], we have

lz/Vel+ly/Va] &
P (Va6 m >v) =B (Grym > val) = T[ TLexp(-h).
k=le/va) =1
therefore

le/Val+ly/val &
log P (\/EG(LYZ/\/EJ > y) = - Z Zah(j\/a)

k=le/va) =1

l2/Val+1y/va) Wa

- Y va| mapvana
k=|2/V/a) 0

h(Valv/v/al) dvdu.

/\/E(Lz/\/EHLy/x/EJ)/\/ELu/\/EJ
T 0

This implies Relation (6). The uniform continuity of h over compact intervals
implies that h(y/a[-/y/a]) converges uniformly on [0, K] to h as a tends to 0, using

that for u € R, |u — Va|u/va] < a, we get
/\/ELu/\/EJ

A(valoivalydo - [Ty <o

lim sup
a—0 <k

0

consequently,

lim  su ‘101P aGe >y) —logP (G, > y)| =o0.
R (Va@r, 5 > u) ~logE (G, > )

From the uniform continuity of the exponential function on | — o0, 0], the uniform
convergence (7) is then easily obtained.

Since the function h is non decreasing, the above identity shows that for 2 > 0,
K>0andy>1,

-1 KAVE|u/Va) _
log P (\/aGaz > y) < - h(vValv/val) dvdu.
[2/v/a] )

If Ag is the integral of h on R, , then for A < Ag there exists K > 0 and gy > 0 such
that

(9) /\</Kﬁ(u)du—ag,

using again the uniform convergence of h(y/a[-/y/a]) on the interval [0, K], one
gets that there exists some yo > 0 and agp > 0 such that for y > yo,

1 K_
sup sup - logP (\/EG(LYZ/\/EJ > y) < —/ h(v) dv + &g
0

0<a<agz>0 Y
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consequently, for y > yq,

P (\/EG@/\/@J > y) < exp (y (60 - /OK h(v) dv)) ;

hence, Inequality (9) gives the relation

+o0o
sup sup/ NP (\/asz/\/Ej > y) dy < +oc.
2

0<a<ap x>0

Since, by Fubini’s Theorem,

+oo VoG, ya)
/ VP (\/a(}"fm/\/aJ > y) dy =E (/ e dy
2

2

the above inequality yields
sup suplE (e}‘\/aGTﬂ/ﬁJ) < +o00.
0<a<ag >0

The proposition is proved. O

Notice that the scaling \/a does not depend on the particular choice of h. The
scaling of h in h¥ = ah (iy/a) determines the correct profile for the space depen-
dence of the loss probability. One can introduce the following Markov chain, as we
shall see, this is the asymptotic embedded Markov chain when « tends to 0.

Definition 2. The sequence (V) denotes a Markov chain whose transitions are
given by

(10) Vl = d min (VO + @VU,EmM) s

where (@z; T > 0) is a family of random variables independent of Vy such that, for
x > 0, the distribution of G, is given by Relation (6).

Proposition 3. For any continuous function f on Ry with compact support, the
following convergence holds,

(11) Jim, sup [B(f (VaGleyvm)) ~E(S(G)] = 0.
If for © > 0, P, denotes the probability such that Vi* = |z/\/a| for all a >0 and
Vo =z, then forn € N and ay, ...a, € Ry,

lim sup|IP’z (\/EVIO‘ <ap,...,/aV* < an) - P, (Vl <ap,...,Vp< an)| =0
a—=0 4

Proof. If f is a C' function on Ry with support in [0, K], K > 0, the identities

[K/Val

> (fvVa) = f((k = DVa)BY > kva) =E(f(Y) - f(Va)),

k=2
for YV =\/aG,, /s and Y = G, are easily verified. The uniform continuity of f’
on Ry and the estimate (7) give the desired convergence (11). If f is a continuous
function with compact support in [0, K], it can be approximated uniformly by C*
functions. For € > 0 there exists a C'* function g on [0, K] such that sup(|f(z) —
g(z));z < K) < ¢, hence

E(f (VaGlayva))) —E(£(Ga))| < 2 + [E(g (Va Gl ya)) —E(9(Ga))|-
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The first part of the proposition is proved.
We shall prove the last part of the proposition for n =2, i.e.

lim sup |Pz (VaVi* <ar,v/aVyi <as) =P, (Vi <ar,Vs < CL2)‘ = 0.
a—=0 5

Because of the transitions of the Markov chains, it is sufficient to show that for any
a1, a2 < Wpax, the following convergence holds

lin%) sup |P, (\/EVIO‘ <ap,VaV® + \/EG%Q < ag)
a—r T

- P, (V1 <a,Vi +@Vl < a2)| =0.
Since

P, (\/avla < ar, VaV + VaGsa < a2)
= /0 P (y + \/EG?y/\/EJ < ag) P, (vaV® € dy),

since the quantity under the integrand is uniformly close to f(y) = P(y + G, < as)
with respect to y € [0,a;], one has to verify that |E, (f(y/aV®)) — E, (f(V1))] is
uniformly small, but this is precisely a consequence of what has just been proved.
The proof for an arbitrary n is done by induction. This completes the proof. [

Corollary 4. If lim,o+/aVy* = v, then, as a tends to 0, the Markov chain
(V/aV.%) converges in distribution to the Markov chain (V) (See Definition 2).

Proof. Since one has to prove the convergence of the finite dimensional distribu-
tions, the corollary is a direct consequence of Proposition 3 and Relation (5). O

Proposition 5. If lim,_,0 /aW§ = w, then the Markov process
W) = (Vaw, sz )

converges in distribution to the Markov process (W(t)) on [0, Wmas] such that
W(0) =w and with the infinitesimal generator given by

12 0N@ = D e + [ B (£60) - ).

for any C function f on Ry .

The Markov process (IW%(t)) is right continuous with left limits everywhere.
The convergence mentioned in this proposition is the convergence of probability
distributions on the space of right continuous functions on Ry with left limits
endowed with Skorohod topology. (See Billingsley [7] or Ethier and Kurtz [12] for
the definitions and results concerning this topology).

The distributions of the variables (G, = > 0) have the following remarkable
property that for =, y > 0,

P(@. >y) = L0224 Y)

(See Definition (6).) This property can be also seen as a consequence of the Markov
property of the asymptotic Markov process (W(t)) when the maximum window size
is infinite.
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Proof. We shall assume that W,y is infinite, the proof is analogous (even simpler)
when this quantity is finite. Basically we shall prove that the infinitesimal genera-
tors converge to the appropriate infinitesimal generator. If this gives an indication
of the kind of results one might expect, to prove the convergence rigorously some
uniform convergence has to be established. We shall use the criterion given by
Condition (h) of Corollary 8.9 page 233 of Ethier and Kurtz [12] for the Markov
processes obtained from Markov chains.
We denote and by C the set of C2-functions f on Ry such that the convergence
: (2
Jim (1 TI()7) s [gfo)] =0,
(H is defined in Proposition 1), is true for g = f', f" and g(z) = f(éx); C is an
algebra that strongly separates the points, i.e. if z € Ry and § > 0 then there
exists f € C such that

inf(|f(y) — f(@)] : ly — 2| > 8) > 0.

Condition (h) of Ethier and Kurtz is applied by taking (in the notations of this
corollary) G,, = Ry, so that Equation (8.47) is automatically satisfied.
If P“ is the transition matrix of the Markov chain (/aW2) and

Ay = (P* —I)/V/a,
where I is the identity; if we prove that for any f € C,
(13) lim [|Aa(f) = Q(f)ll = lim sup |44 (f)(z) — Q(f)(2)] =0,
a—0 a—)OzZO

then Equation (8.48) of Condition (h) of Ethier and Kurtz is established, hence the
Corollary 8.9 can be applied and the convergence is then proved.

Forz > 0 and f € C,
%(f(w +va) - f@)P (G2 > 1)

+ (1 (Valdsyva)) - gw) EEE 2L,

For z > 0 the difference |A,(f)(z) — Q(f)(x)| can be bounded by the quantity
Aq(z) + Ag(z), with

Aa(f)(x) =

Ar) = \%mm V@) - F) - Fa)

17wl [1- e (~va [ Bu/vaa d)‘

and

Aole) = |1 (Valdz/Val) - 1(ox) /

+(1f60)] + 1£(2)) lexp( f/j_ el ﬂ> —/Ozﬁ(u)du.

www.manharaa.com




A MARKOVIAN ANALYSIS OF AIMD ALGORITHMS 11

Taylor’s formulas for f and z — exp(—=), the fact that f is in C and straightforward
calculations give the desired uniform convergence (13). The proposition is proved.
(|

The limiting Markov process grows deterministically at rate 1 and jumps from
T to dx with intensity foz h(u) du. It is easy to check that, starting from z > 0, the

duration of time to jump downwards has the same distribution as G,,.

3. CONVERGENCE OF THE INVARIANT MEASURES

We are now interested by the equilibrium behavior of the AIMD algorithm. Up
to now, a closed form expression for the invariant probabilities of the Markov chains
(W) and (V,%) is not known, see Dumas et al. [9] for stochastic bounds in some
special cases. The main results of this part concern the convergence in distribution
of these invariant probability measures when « tends to 0. As we shall see in
Section 4, the limiting probabilities have an explicit expression in some cases of
practical interest. For the moment we study the behavior of the embedded Markov
chain (V).

Definition 6. If K > 0, T [resp. Tk] is the hitting time of the interval [0, K| by
the Markov chain (y/aV,®) [resp. (V,)],

Tfé:inf{nZl:\/aVnagK} andTK:inf{nZI:VngK}.

Proposition 7. For a > 0, the Markov chain (V%) is ergodic. When @S, ., = +00,
there exist K, & and XA > 0 such that for 0 < a < 1,

(14) E (eﬁT?*WEVo“ Jave > K) <1.

Proof. The proof uses a Foster-like criterion to give an estimate of the exponential
moment of T (see Meyn and Tweedie [18]). For n € N, F,, denotes the o-field
generated by the random variables Vi*,... V,* ,, V..

The Markov chain (V%) is clearly irreducible and aperiodic on N — {0}. For
A >0 and n € N, define Z,, = exp(Ay/aV,*). For K > 0, the inequality

IlE(Zn+1 - Zn‘fn) S ZnE (e)\(ﬁfl)K+)\5\/EG§’,7:, - ]-)

3

holds on the J,-measurable event B, ' {VaV,* > K}, therefore if a < 1,

E(Zp41 — Zn|Fn) < Z, PO-DK qup E (e)‘G(Lly/\/EJ) -1
0<g§1
y>

holds on E,. According to Proposition 1, we can fix A < Ag so that there exists a
constant C' satisfying

E(Zni1 — ZnlFn) < Zn (Ce*(‘H)K - 1) ,
on E, for all a €]0,1[. Consequently, there exist some Ky > 0 and 1 < 1 such that
(15) E(Zps1|Fn) £nZ,,  on the event {{/aV* > K},
for K > K. The inequality (15) implies that if \/aV®* > K, the sequence

(Un) = (UﬁnAT’% Zn/\T;;)
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is a super-martingale with respect to (F,) (since the relation T > n implies that
the inequality /aV;* > K holds for i < n). Hence for n > 0,

LD (n*”AT’? ‘ fo) <E (UﬁnAT’% Znare

’fg) = B(U,|Fo) < Up = VoY
By letting n go to infinity we get the inequality
(o7 |) s

on the event {y/aVy* > K}. The proposition is proved. O

Proposition 8. The continuous state space Markov chain (V) is Harris ergodic.
If V o is some random variable distributed as the invariant probability of (V,), it
satisfies the following identity

(16) V.. " 5 min (Voo ¥ Evm,mm)
where (G; © > 0) are random variables independent of V o, whose distributions are
given by the relation (6).

For the general definitions and results concerning Markov processes with a con-
tinuous state space, see Nummelin [19].

Proof. Since the transition of the Markov chain has a continuous density, it is a
Harris chain (See Durrett [10] page 326). It is easily seen that for any = > 0,
then P(Gy > y) < P(G, > y) for y > 0; G, is stochastically bounded by Gj.
Thus we can construct a sequence (Z,) and an i.i.d sequence (Gy,,) with the same
distribution as Gy such that Zy = V,

Zni1 =068(Zy + Gop) and V,, < Zy,,

for all n € N. The sequence (Z,) is an AR process (Autoregressive) which is
Harris ergodic (see Durrett [ibid]). Thus we get that the sequence of probability

distributions
I e —
k=1

is tight; clearly any limit of this sequence is an invariant probability distribution
for the Markov chain (V,,). To conclude, an Harris Markov chain with an invari-
ant probability distribution is necessarily ergodic. (See Durrett [10] Exercise 6.11

page 330.) _
According to Definition (10) of the transitions of the Markov chain (V,), its
invariant distribution satisfies the relation (16). O

Theorem 9. When « tends to 0 the invariant distribution of the Markov chain

(V/aV,*) converges to the invariant distribution of the Markov chain (V,,). Conse-
quently, the following diagram commutes,

(Vavy) S ave

o | J

V) —— V.
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Proof. We denote by 7* the invariant probability of (v/aV,*) and (Z2) is the se-
quence of the successive elements of [0, K] visited by this Markov chain. In the rest
of the proof, for variables with index «, the notation E, (-) and P,(-) refer to the
Markov chain (v/aV,%*) when the distribution of /aV{* is p.

Notice that if \/aVi* < K, then Z§ = /aVg* and Z7* = \/aVj. . With the same
argument as in the proof of Proposition 8 it easily seen that (Z¢) is a Harris ergodic
Markov chain; 7% denotes its invariant probability, in particular 7%[0, K] = 1. The
probability 7% can be represented as

T -1

def T = 1 N «
(17) Bee ()= )0 = gy P I;)f(\/avk)

for any bounded measurable function f on R; (see Asmussen [5] for example). For
the asymptotic Markov chain, with the corresponding notations (7 is the invariant

probability of (V,)), the following identity holds,

(18) B = gy | 2 1)
TE k=0

where T is the invariant probability of (Z,,) which is the embedded Markov chain
of the visits of (V,,) in the set K.

The proof of the Theorem consists in showing that, for some K > 0, the left hand
side of (17) converges to the left hand side of (18) when « tends to 0. To prove this
convergence, the inequality (14) is used to truncate the sum under the expectation
and the remaining terms are shown to converge with the help of relation (11).

The set of probability measures {7%; a > 0} is obviously tight. Consequently,
there exists a probability 7k on [0, K] and a sequence (a,) converging to 0 such
that (73") converges to mx.

The probability wx is invariant for (7n)

Forn e Nand a, z < K,

P(TR =n,Z3 <a) =P (V* > K,..., V2, > K,V <a)
According to Proposition 3, when a goes to 0 this last quantity is converging to

HD(Vl > K, ... 77—,,71 >K,Vn S(I) :]P)(TKZH,Zl S(Z)

uniformly on /aVy* € [0, K]. In particular the variables (Tg") [resp. (Z7™)]

converge in distribution to the variable T [resp. Z;]. By invariance, for a > 0,

7" ([0, +00]) = Prgn (Z5" < a) = Prgn (27" < )

the uniform convergence gives the identity
7k ([a,+oc]) = lim Pan (20" < a) =Py (Z) < a)
n—+o0 K

The probability mx is therefore an invariant probability measure for the Markov
chain (7n); by uniqueness this implies that mx = 7. Thus, we have shown that
the probabilities (7% ;a > 0) converge to Tx as a tends to 0.

Proposition 7 shows that there exist constants K, &, A > 0 such that

E (eET; —AaVy

Vave > K) < 1.
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14 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERT

The Markov property gives the relation
e*EE,r;-( (egTﬁ) <1+ Eqe (e)“/avla E/ave (eng‘;*A‘/avla VaVv® > K))

<14 B (em/avla) <1+E. (em\/avo‘#am/ac:?,oa)

since \/aV* < K for the probability measure P,

3

engn; (eéT’?) <1+ e)"SKEn; (EA\/EG%Q)

and this quantity is bounded for 0 < « < 1, according to the inequality (8) (by
choosing A sufficiently small). With the initial distributions (7% ), the variables
(TE; a < 1) are therefore uniformly integrable, in particular

lim Eﬂ'“ (TI%) = Eﬂ'K (TK)u
a—0 K
and for € > 0 there exists C' > 0 such that
E,, (TKl{TKZC}) <e and By (TI%I{T;;ZC}) <e,

for 0 < a < 1. From these estimates and the uniform convergence of Proposition 3,
for a bounded measurable function f, we deduce that

TR —1 Tg—1

lim ]E,T;x( Z f(Vka) = EFK Z f(vk) )
k=0 k=0

a—0

as a goes to 0, hence according to the identities (17) and (18), the probabilities
(m®; ¢ > 0) converge to T as « tends to 0. The theorem is proved. O

Theorem 10. When a tends to O the invariant distribution of the Markov chain

(v aW Q) converges to the invariant distribution of the Markov process (W (t)),
t—+oo
Wa Wa
(vawy, ) = vawe

- !

(W(t)) — W(cx).
Proof. The proof is similar to the proof of Theorem 9. Basically the sums in (17)
and (18) have to be replaced by integrals. O
4. THE REPRESENTATION OF THE LIMITING INVARIANT MEASURES

In this section we shall consider the case when h = 1; the loss probability is a
constant for all packets. In this case, for x > 0, the distribution of G is given by

(19) P(G, >y) = 67”“"’792/2,

for y > 0. The infinitesimal generator 2 given by (12) of the asymptotic Markov
process is given by

(20) Q@) = [(2) o <tpmnt + 2(f(07) = f(2)).

The following simple proposition is crucial to get the stationary behavior of AIMD
algorithms analyzed in this section.
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Proposition 11. For z > 0, if the distribution of a random variable G, is given
by (19), the following identity holds

(21) (r+G,)" " 2B, + 42,

where E1 an exponentially distributed random variable with parameter 1.

Proof. For y > 0, the relation (19) gives
P((z+ Ga)® >y +a?) =e /72,
and the result follows. O

We first study the case of the infinite maximum window size. The characteristics
of the system at equilibrium (invariant probability, throughput) have rather simple
closed form expressions. The corresponding expressions for the finite maximum
window size case are still explicit but more intricate.

4.1. Infinite maximum window size.

The embedded Markov chain. The following proposition gives a probabilistic repre-
sentation of V4, when the maximum window size is infinite. Its analytic counterpart
is Proposition 13 below. It shows that the square of the limiting embedded Markov
chain is an AR process. To our knowledge, this crucial property does not seem
to have been remarked previously. The AR property is the key characteristic of
the AIMD control scheme. As we shall see later the AR property has important
consequences on the qualitative behavior of TCP. In particular it implies that the
tail distribution of the size of the congestion window decays as exp(—£x2). This
indicates that the probability of having large windows is rapidly decreasing and
that the steady state probability distribution is concentrated on relatively small
values of the congestion window size.

Proposition 12. When the mazimum window size is infinite, Wy, = +00, the

square of the Markov chain (V) is an AR process with the following representation:

forn eN,
2

— —2
Vo =0 (V) +28,)
where (E,) is an i.i.d. sequence of exponentially distributed random variables with
parameter 1. o

Its invariant probability can represented by the random variable V o, satisfying
relation (16)

+o0
2 Z 82" E,,.
n=1

Proof. From relation (10) we get

dist.

Vot 25 (Vo + Gy ),

where the variables (G,; > 0) are independent of V,,. Therefore Proposition 11
gives the identity

Vo 202 (Vi +2B,),
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16 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERT

where FE, is an exponential variable with parameter 1. The AR property is proved.
At equilibrium, using relation(16), the corresponding equation is
—2 dist.

y2 dist 52 (Vfo + 2E1) .

If this relation is iterated, one gets identity (22) (the residual term 62"7020 converges
in distribution to 0). O

From the above proposition one can derive the density of the limiting random
variable V .

Proposition 13. The density function of Vo when the mazimum window size is
infinite is given by, for © >0,

1 = 1

—2on,,_—6"2"g?/2

(23) hs(z) = xe

(1 - o2m) 2 (1 — 6—2k)

n=1 n=1 k=1

Proof. Let Vs, denote the Laplace transform of the random variable 7020/2, which
is defined for £ € C with (&) > 0 by

Voc () =B (e V=/2).

A direct consequence of the independence of the exponential random variables (E,,)
in equation (22) is that

~ s 1
Vo (§) = 1:1;[1 U+ 6%g)

The Laplace transform Vs, has simple poles located at the points {-1/62", n > 1}.
For n > 1, the residue of V, at —1/§2" is given by

n—1 00

1 1 1 §—2n 1
52n kl;[l (1 — 62k /§2n) k:1;[+1 (1 — 62k /52n) 2;11(1 — 52k HZO=1(1 —§2k)
It follows that

+oo

‘7 _ 1 1 57271
=)= [152, (1= 62F) ; nl) g2y £+ 62

hence the density of 7020/2 is given by, for = > 0,

1 = 1

—2n_—6"2"g
— e )
12 (1= 6°F) n; nl(1 = §-2k)
This completes the proof of the proposition. O

As shown by the picture below the distribution of V., is sharply concentrated
near the origin. Its tail distribution is equivalent to Czexp(—d22%/2) as z gets
large.
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0.8
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0.2

Ficure 2. The density of V. for § = 1/2

The throughput.
Definition 14. For a > 0, the throughput of the algorithm is defined as the limit

p*(6) = lim ZWk

n——+oo N

This definition assumes that the round trip time (RTT) is taken equal to 1. Thus,
up to this factor, this is the definition of the literature. The ergodic theorem for
the Markov chain (WW.%) gives that p®(d) = E(W2). Using the embedded Markov
chain (V,) it is easily seen that the throughput can also be written as

0 GPa1

pa((s):ngrfooz G%Z Z (Vi+ k).

i=1 =

From the ergodic theorem applied to the Markov chain (V&

E (foé*’l (Ve + k)) E (2G‘&;Vo‘é + (G5£)2>
£(G. ) - 2 (G )

Proposition 15. The asymptotic throughput of an AIMD algorithm with multi-
plicative decrease factor § is given by

), we get finally

(24)  p*(0) =

—-1/2.

_ 5 _ 2 IS (-
(25) p()—hm\/_p() m_\/;l—[:i%(ldwwl)'

Proof. By definition of the throughput, we have

% (6) = —1/2+E( (V; +G“;)2 - (V;)Z)/m( 3;) .
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18 VINCENT DUMAS, FABRICE GUILLEMIN, AND PHILIPPE ROBERT

Identity (16) shows that

p7(6) = —1/2+ E((V2)*(1/6* - 1)) / 28 (G¥, )

_ 0+ 9HE(V2)?)
T 26(1 - 0)E(VE) 172

)

According to Theorem 9, the following convergence holds

‘ ) (1+0E(V2) 5
Vo) = B ) T @ DRV

where the last relation is a consequence of representation (22). The quantity E(V )
is obtained with expression (23) of the density hs. The relation

+o0 p
/ 672nz2 exp(7672"z2/2) dr = \/;6’".,
JO

for n > 1 and Euler’s identity (see Erdelyi [11] formula (25) page 261),

+00o mn(n+1)/2tn +o0o

(26) —— = 1+ ta!
Lo L)
applied for z = 6% and ¢ = —§ give the final formula for the throughput. O

Note that Ott et al. [20] obtained expressions similar to (23) and (25) for a
continuous system, described as the solution of a deterministic differential equation
perturbated at the points of a Poisson process. For the finite time behavior, this
system can be considered as a limit of the original model. If we observe the system
at the level of the packets instead of the successive congestion windows, the points
of the Poisson process are the instants, properly renormalized, when packets are
lost. At equilibrium there is no convergence result for the invariant distributions
supporting the fact that this system may be seen as a limit of the original model.
Technically, the trouble comes from the deterministic differential equation

a'(t) = a/x(t)

considered in that paper. It has a singularity when z(0) is close to 0. In finite
time, this singularity can be controlled; for the equilibrium, i.e. at ¢t = 4o0, it is
less clear how one can prove that the invariant probability distributions converge
to the invariant probability measure of the perturbated differential equation.

REMARKS.

a) For the case of TCP, § = 1/2, the throughput is ~ 1.3098 which is the value
observed in earlier simulations and experiments (see Floyd [13], Floyd et al. [14]
and Madhavi and Floyd [17]).

b) Trite manipulations with the expression (25) of p(d) show that

2

p(d) ~ m

when § /1. This does not mean that, in practice, the throughput really increases
with &. Indeed, the loss process is in fact also related to 6. The model we consider
does not take into account this relation.
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The continuous time process. The above results on the invariant distribution of
the embedded Markov chain give the expression of the density of the invariant

distribution of the continuous time process (W (t)).

Proposition 16. When the mazimum window size is infinite, the rescaled asymp-
totic density function of the congestion window size at equilibrium W o, is given by,
for x >0,

v 2 = —2n —2n 2
(27) H(;(m) _ — /7T Z _ 0 — 676 T /2.
(1 2n+1) = [T, (1 - 62k)

n=0

Proof. The classical representation of the invariant measure of the continuous time

process (W (t)) with the invariant probability of (V) is given by

1

(28) E(f(Wm)):WE</Oavmf(Vm+s) ds),

for any non negative measurable function f on R,. The invariance relation (16)
(with Wyax = +00) gives the identity
— 1-0_ —
B(Ty.) = B(T.).
the right hand side is precisely the inverse of the asymptotic throughput according
relation (25). If we take f(z) = exp(—Az) for z in identity (28) and A > 0, the
Laplace transform of W, is given by

E (exp (—AWe)) = 5(6) E (/067“’ exp (- A (Voo + 5)) ds)
= PO (g (exp(-AV o) — exp (A (Voo + T ) )

Relation (16) shows that this last expression is

E (exp (—AWa)) = @ (E (exp(-AVao) ) — E(exp (- AV /0))

Ve /s
=p(0)E (/V e N ds)

From Relation (28) we get that the density of W, is given by
Hs(x) =p(0)P (Voo <2<V /8) =p(0) P (02 <V < x),

for x > 0. The expression (23) of the density of V, is used to conclude the
proof. O

4.2. Finite maximum window size.
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The embedded Markov chain. In this section, we assume that the rescaled maximum
window size Wmax is finite. As we shall see, by using equation (16), it is also
possible to explicitly compute the distribution of the limiting random variable V .
The following proposition is the analogue of Proposition 12, it gives an explicit
probabilistic representation of V.

Proposition 17. If (E;) is an i.i.d. sequence of exponential random variables with
parameter 1, the invariant probability measure of the limiting Markov chain can be
represented as follows,

n>0
- i=1

where (E,) is an i.i.d. sequence of exponentially distributed random variables with
parameter 1.

Proof. From the identity (21) and Equation (16), we get that

(30) T2 At 52 (m2 28, + Vfo) ,

max’

where F; is an exponential random variable with unit mean, independent of V.
If we iterate this equation, by induction we obtain that for N > 1,

n N
72 dist. : 20,2 2 1. 2N 2 2i .
V. = 091}1;1}1\1,71 (6 Whax + 2 gl 1) El> A ((5 Ve +2 E ] E1,> .

i=1

The proposition follows by letting IV go to infinity. O

Notice that when Wmax goes to infinity, the representation (29) converges to
the expression (22) obtained for the infinite window size. We now give the explicit
representation of the distribution of V .. The equation (30) shows that this variable
has a mass at dWmnax. As we shall see in the next proposition, the distribution of
Voo is a convex combination of a Dirac mass at 6Wmax and a density function on

[0, 0Wmax] -

Proposition 18. The distribution of Vs has a mass n at 0 yeq, with

“+oo —+0o0
1 2n-—2 2(n+1)-—2
31) 1/n=1 1§ S ( 82w, 2 6 w,,,,,,,,./2>
an =1+ Tl >(§m_](15%) : :

and a density function hs on [0, 0W,p4z] given by

+oo
h =hs(z) +x o (22— 022 )k, (22 - 62w, ) ),
(32)  hs(z) = hs(z) + Tnnz::] (k‘ (T 52t ) k (T 5" w ))

where hs is the density function given by (23) and for, n > 1, k,(2x) is the density
of 02Ey + --- + 0°"E,, when the random variables (F;) are i.i.d. exponentially
distributed with parameter 1.

The function k,, can be expressed explicitly as a linear combination of the func-
tions exp(—6~2%z), # >0, k = 1,...,n. (Notice that k, vanishes on R_).

With the expressions (31) and (32), it is easily seen that the distribution of V
converges to the distribution with density hs when wp.x tends to infinity.
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Proof. If we set Z = /2 B = 6% and w = Bw?, /2, the relation (30) shows
that the variable Z satisfies the following relation

Z =" min(B(Z + E),w),

where FE is an exponential variable with parameter 1 independent of Z. If ¢ denotes
the Laplace transform of Z, the above equation can be written as, for £ > 0,

(&) =E(e*”) =E (675ﬁ(z+E)1{g(z+E)<w}) +e *P(B(Z + E) > w).

By using the fact that E and Z are independent, we get

B L) A WIS
(33) ¢(£)—]E<e 07 158 +e§lE(e ﬂz),

therefore,

&8 —(e+1/8m
B 9O = 35 + e o(-1),
if the above relation is used recursively, we obtain for n > 1,

1 B n—1 §ﬂk+1 B .
- - n -1 w/B Y 3¢ A 1)
[T, (1 +€8%) PEA™) + ¢(~De =+ &B")e

since ¢(£8™) — 1 as n goes to infinity (recall that 8 < 1), the Laplace transform ¢
can be expressed as

$(§) =

)

(€) 1 (—1)e /B ~ i es*
103 I ———) () PRl AR
(1 E6%) = I (1 +¢87)

If we take £ = —1 in this identity we get that
Bn+1 " +oo
n>0 L1k=1 (1—5%) n=1

If we set ) = ¢(—1)e~ "/ then clearly
n=PB(Z+E)>w) =PV +Gp_ >Wmax) = P(Veo = 6Wmax),

according to relation (30). It is then easily seen that ¢ can be written as

_ 1 —ew o€ _ €8
"o :;"i(l+sﬁk)+"< +ZH +£ﬁ)( )>'

The above Laplace transform is then easy to invert and yields the identity (32). O

The throughput. With the same argument leading to the relation (24) for the infinite
maximum window size, the throughput p®(d) (Definition 14) can be expressed as

P (O)B(r) = B ( > W,?) ,
k=0

where 7¢ is the first time there is a loss when the initial window size is V.. Notice
that 7@ is G{. only if a loss occurs before (W) hits the level wg,,. When the

X
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maximum window size is reached, the window size remains constant for a geometri-

cally distributed period H* with parameter exp(—aw2,,,). This gives the following
identities
a a o o
(35) T = GV; {VQ+G¢1Q <wmax} + (wmax V + H {VO‘;+G'°‘ >wr£;1ax},
e V2+Gha VI4GYa
o o o
(36) Z Wy = Z kot | W " — Z k 1{V“+G°‘ >wi.. )
k=0 k=V2 k=ws,,

If n® is the probability of this event (by invariance n® = P(VE = dw$,,)), we get

o (Zl W,g) - %IE ((\/avgg + \/EG”‘D%)2> - %E((\/avogy) +o(Va)
k=0

FVaug B (Var®) - 0 (B (Vaug, +vacs, ) - (Vaui.)').

this identity is a consequence of the Markov property of (W2). The variable V2 +
GV . conditionally on the event

{V“ +GYa > wmax}

has the same distribution as wg,,, + Gf,. . The scaling relation (4) for wy,,, im-

plies that \/aH® converges in distribution to an exponentially distributed random
variable with mean 1/Wyax, using Theorem 9, we obtain

7 i:%aE(TZIWk)— (B (Ve +Tr)* - E(V))

1= 2 (B (Bnax + Grr)” = T = 1,

N3

by Proposition 11. Similarly for 7%,
T = (Whax — VE) NGV e +H“1{Vﬂ

max G0 20 )
therefore
E(r) = E (wiha A (V2 + Gy ) ~ V) + 0 "E(H")
1

= LRV + B (H)

by the invariance relation (16) for V2.
The following proposition is therefore a consequence of the last identity and
relation (37).

Proposition 19. If p*(0) is the throughput of an AIMD algorithm with multiplica-
tive decrease factor § and mazimum window size we then

)
. e PSS

the constant ) and the distribution of Vo are given by Proposition 18.

maz’

The above formulas have been used in Figure 3 and 4 to represent the dependence
of the throughput and 5 with respect to the maximum congestion window size.
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FiGUurRE 4. The stationary probability of hitting the maximum
window size before a loss

5. THE DISTRIBUTION OF THE HITTING TIMES

In this section we study the hitting time of some level by the size of the conges-
tion window. Its practical importance is fairly clear since the performance of the
transmission is optimal when the maximal congestion window is reached.
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Definition 20. If z > 0, S is the first time (W) reaches the level z/\/a,
S¢=inf{n>1: W2 >z/Va} and S, =inf {t > 0: W(t) > =}

The convergence result of Proposition 5 gives the key to the limiting behavior
of 8%, it suggests that S is of order 1/4/a. The next result show that this is
indeed the case. Moreover, the limiting distribution is expressed with the help of
an eigenvector of the infinitesimal generator Q defined by (12). These results are
an illustration of the interest of the functional limit theorems proved in Section 2.

Theorem 21. If lim,_,q /oW = zq < W(0) = =z, the variable \/aS® converges
in distribution to S, as « tends to 0. Its Laplace transform given by, for € >0,

B (efgﬁm) ~ fe(wo)

- fe(@)’
where f¢ is the unique solution of the equation
(39) ') +yfoy) = E+y)f),
with f(0) = 1.

Proof. For a > 0, by definition
{VasSg > a} = {oiltlga \/EW[);/\/EJ < az} ,

since the function g — sup{g(u); 0 < u < a} is continuous on the Skorohod space
of functions on R} (see Ethier and Kurtz [12]), Proposition 5 shows that

lim P (vaS$ >a) =P < sup W(t) < ’I‘) =P (S, >a)
a—0 0<t<a
the variable \/aS2 converges in distribution to S, as a tends to 0.
We now prove that equation (39) has a unique solution. If f is such a solution,
taking g(y) = exp(— (£ +y)?/2) f(y), we get the differential equation,

9'(y) = —ye ITOEHIEIN g (5,
hence
y
(40) 9(y) = e /2 / we~(1=OuEH+O)W/2 4 (5y,) .
Jo

Since § < 1, the above equation can be seen as a fixed point equation on the space
C(]0,1/2]) of the continuous function on [0,1/2]. If ¥(g) denotes the right hand
side of (40), it is clear that ¢ is a contracting functional on C([0,1/2]) endowed
with the uniform norm. The operator ¢ has therefore a unique fixed point on
C([0,1/2]). If g is this fixed point, then g can be continued on the real line. For
y € Ry, according to (40), the value of g(y) is expressed with the values of g on
the interval [0, dy]. The existence and uniqueness of equation (39) are proved.
Using expression (20) of the infinitesimal generator €2, equation (39) can also
be written as Q(f)(z) = {f(z) for x > 0. (Here Wpax does not play a role, it
is assumed to be infinite). Using a classical result on the martingales of Markov

processes (see Rogers and Williams [23] for example), we get that

(€57 (W(tAS.))
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is a local martingale. Since f is continuous on [0, z], this local martingale is bounded
hence a regular martingale, therefore

f(wo) = E (e €5 f (W(S,))) = f(n)E (e €5-) .
The theorem is proved. O

We have not been able to find a closed form expression for the solution of equa-
tion (39). Nevertheless it is possible to get some explicit results on the distribution
of the hitting times (S, ). If f is the solution of the following equation, for = > 0,

Qf)(x) =1,
with f(0) = 0, when W(0) = x5 < z the same arguments as in the proof of the
previous theorem show that E(S,) = f(x) — f(z¢). The functional equation to

solve is
f'(@) + 2(f(6z) — f(2)) =1,
for z > 0, with f(0) = 0. If g(x) = exp(—2?/2) f(z), then this equation becomes

4y gl - / e u = p(g)(a) X - / “ue -8 g(5u) du
0 0

for £ > 0. As before this fixed point equation has a unique solution which can be
obtained by iteration. If this equation has some similarity with identity (40), its
solution can be represented explicitly with the following trick. For a, b € Ry, we
denote by HJa,b] the function

Hla,b)(x) = 67“12/2/ e 02 gy,
0
for & > 0; the operator ¢ applied to H|a,b] gives the relation

)

(12) o (Hlab) = ——— (H o+ +1-5%,0%)

—H[0,a+0%+1-4%).

Definition 22. The countable subset T of R%. and the function L : T — Ry are
defined as follows:

— (0,1) € T and L((0,1)) = (1 = 6*)/(1 + d — 6%);
— if z = (a,b) € T then the elements eg(z) = (a + 626+ 1 — 62,52b) and
e1(z) = (0,a+ 8°b+ 1 — 6%) are also in T with

L)) = 0

fori=0 and fori=1if z # (0,1).
In this manner 7 has a binary natural tree structure with (0, 1) as the ancestor,
the children of z € T are eg(z) and e; (z). Notice that the function z — eg(z) has no
fixed point and (0, 1) is the only one for z — e (z) If we combine the representation

of the solution of the equation (41) by iteration together with the identity (42), we
obtain the following proposition.

L(2),
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Proposition 23. If W(0) = 29 < z then E(S,) = f(z) — f(xo) with

2
(43) fla) ="/ L(z)h[2](),

zeT

where
hlz](z) = e*“EZ/ e du,
0
if z = (a,b) and the set T and the function L(-) are given by definition 22.

We finish by an estimation of the mean value of S,, it can be refined with an
arbitrary precision by using the above proposition.

Corollary 24. With the notation of the above proposition, if W(0) = 0, the in-
equality m(z) <E(S,) < M(z) holds, with

z?/2 z x
m(z) = LA (1-4§- 52)/ e W2 quy + 5/ e W2 gy, ,
1—02 0 0
M(z) = et /2 / e 2 gy,
0

Proof. Since the solution of the fixed point equation (41) is clearly non negative,
the relation

o< [
0

holds, therefore the upper bound is true. This inequality applied in the right hand

side of (41) gives the lower bound. O
The set T is apparently not easy to describe explicitly (if we forget the tree
structure).

0.9 E— -

0.8 E -

0.7 4

0.5 ; 4

0.4 [ ; 4

0.3 . -

0.2 H 4

0.1 ; -

* . .
°o > a o s o

FIGURE 5. The set T for § =1/2

We conclude with a convergence result on the hitting times of the embedded Markov
chain (V,,),

Tf:inf{nZl:Vn‘IZm/\/a} and?m:inf{HZI:Van}.
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Theorem 25. If lim,—o/aVy* = xg < z, the variables 7, a > 0 converges in
distribution to T, when o — 0. The generating function of T, is given by, for
O<u<l,

7 fu (TO) 22577 /2
(44) E(u™)=>—~—%, with f,(z e’ ,
(u™) fulz) ;} Hk_] (1-— 521«)
Proof. The convergence is fairly clear from Corollary 4. The equation
(45) uIE(f(V1)|VO:a:):f(:U)

is equivalent to

fl(x) = xf(x) — uxf(dz).

The function defined by (44) clearly satisfies such an equation, therefore the iden-
tity (45) implies that the sequence

(“‘n/\?m fu (Vn/\?m ) )

is a bounded martingale, we conclude by taking its expected value at infinity. O
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